000 03398nam a22003855i 4500
001 287743
003 MX-SnUAN
005 20170705134216.0
007 cr nn 008mamaa
008 150903s2013 xxu| o |||| 0|eng d
020 _a9781461460251
_99781461460251
024 7 _a10.1007/9781461460251
_2doi
035 _avtls000341797
039 9 _a201509030339
_bVLOAD
_c201405050234
_dVLOAD
_y201402061108
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQA273.A1-274.9
100 1 _aMadras, Neal.
_eautor
_9317098
245 1 4 _aThe Self-Avoiding Walk /
_cby Neal Madras, Gordon Slade.
264 1 _aNew York, NY :
_bSpringer New York :
_bImprint: Birkhäuser,
_c2013.
300 _axvI, 427 páginas
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aModern Birkhäuser Classics
500 _aSpringer eBooks
505 0 _aPreface.-  Introduction -- Scaling, polymers and spins -- Some combinatorial bounds -- Decay of the two-point function -- The lace expansion -- Above four dimensions -- Pattern theorems -- Polygons, slabs, bridges and knots -- Analysis of Monte Carlo methods -- Related Topics -- Random walk -- Proof of the renewal theorem -- Tables of exact enumerations -- Bibliography -- Notation -- Index. .
520 _aThe self-avoiding walk is a mathematical model that has important applications in statistical mechanics and polymer science. In spite of its simple definition—a path on a lattice that does not visit the same site more than once—it is difficult to analyze mathematically. The Self-Avoiding Walk provides the first unified account of the known rigorous results for the self-avoiding walk, with particular emphasis on its critical behavior. Its goals are to give an account of the current mathematical understanding of the model, to indicate some of the applications of the concept in physics and in chemistry, and to give an introduction to some of the nonrigorous methods used in those fields.    Topics covered in the book include: the lace expansion and its application to the self-avoiding walk in more than four dimensions where most issues are now resolved; an introduction to the nonrigorous scaling theory; classical work of Hammersley and others; a new exposition of Kesten’s pattern theorem and its consequences; a discussion of the decay of the two-point function and its relation to probabilistic renewal theory; analysis of Monte Carlo methods that have been used to study the self-avoiding walk; the role of the self-avoiding walk in physical and chemical applications. Methods from combinatorics, probability theory, analysis, and mathematical physics play important roles. The book is highly accessible to both professionals and graduate students in mathematics, physics, and chemistry.  
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
700 1 _aSlade, Gordon.
_eautor
_9317099
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9781461460244
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-1-4614-6025-1
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c287743
_d287743