000 03258nam a22003735i 4500
001 287830
003 MX-SnUAN
005 20160429154603.0
007 cr nn 008mamaa
008 150903s2013 xxu| o |||| 0|eng d
020 _a9781461460404
_99781461460404
024 7 _a10.1007/9781461460404
_2doi
035 _avtls000341802
039 9 _a201509030339
_bVLOAD
_c201405050234
_dVLOAD
_y201402061108
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQA276-280
100 1 _aGrover, Jeff.
_eautor
_9317234
245 1 0 _aStrategic Economic Decision-Making :
_bUsing Bayesian Belief Networks to Solve Complex Problems /
_cby Jeff Grover.
264 1 _aNew York, NY :
_bSpringer New York :
_bImprint: Springer,
_c2013.
300 _axI, 116 páginas 35 ilustraciones, 22 ilustraciones en color.
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aSpringerBriefs in Statistics,
_x2191-544X ;
_v9
500 _aSpringer eBooks
505 0 _aStrategic Economic Decision Making: The Use of Bayesian Belief Networks (BBN) in Solving Complex Problems -- A Literature Review of Bayes’ Theorem and Bayesian Belief Networks (BBN) -- Statistical Properties of Bayes’ Theorem -- Bayes Belief Networks (BBN) Experimental Protocol -- Manufacturing Example -- Political Science Example -- Gambling Example -- Publicly Traded Company Default Example -- Insurance Risk Levels Example -- Acts of Terrorism Example -- Currency Wars Example -- College Entrance Exams Example -- Special Forces Assessment and Selection (SFAS) One-Stage Example -- Special Forces Assessment and Selection (SFAS) Two-Stage Example.
520 _aStrategic Economic Decision-Making: Using Bayesian Belief Networks to Solve Complex Problems is a quick primer on the topic that introduces readers to the basic complexities and nuances associated with learning Bayes’ theory and inverse probability for the first time. This brief is meant for non-statisticians who are unfamiliar with Bayes’ theorem, walking them through the theoretical phases of set and sample set selection, the axioms of probability, probability theory as it pertains to Bayes’ theorem, and posterior probabilities. All of these concepts are explained as they appear in the methodology of fitting a Bayes’ model, and upon completion of the text readers will be able to mathematically determine posterior probabilities of multiple independent nodes across any system available for study.  Very little has been published in the area of discrete Bayes’ theory, and this brief will appeal to non-statisticians conducting research in the fields of engineering, computing, life sciences, and social sciences.    
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9781461460398
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-1-4614-6040-4
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c287830
_d287830