000 | 03258nam a22003735i 4500 | ||
---|---|---|---|
001 | 287830 | ||
003 | MX-SnUAN | ||
005 | 20160429154603.0 | ||
007 | cr nn 008mamaa | ||
008 | 150903s2013 xxu| o |||| 0|eng d | ||
020 |
_a9781461460404 _99781461460404 |
||
024 | 7 |
_a10.1007/9781461460404 _2doi |
|
035 | _avtls000341802 | ||
039 | 9 |
_a201509030339 _bVLOAD _c201405050234 _dVLOAD _y201402061108 _zstaff |
|
040 |
_aMX-SnUAN _bspa _cMX-SnUAN _erda |
||
050 | 4 | _aQA276-280 | |
100 | 1 |
_aGrover, Jeff. _eautor _9317234 |
|
245 | 1 | 0 |
_aStrategic Economic Decision-Making : _bUsing Bayesian Belief Networks to Solve Complex Problems / _cby Jeff Grover. |
264 | 1 |
_aNew York, NY : _bSpringer New York : _bImprint: Springer, _c2013. |
|
300 |
_axI, 116 páginas 35 ilustraciones, 22 ilustraciones en color. _brecurso en línea. |
||
336 |
_atexto _btxt _2rdacontent |
||
337 |
_acomputadora _bc _2rdamedia |
||
338 |
_arecurso en línea _bcr _2rdacarrier |
||
347 |
_aarchivo de texto _bPDF _2rda |
||
490 | 0 |
_aSpringerBriefs in Statistics, _x2191-544X ; _v9 |
|
500 | _aSpringer eBooks | ||
505 | 0 | _aStrategic Economic Decision Making: The Use of Bayesian Belief Networks (BBN) in Solving Complex Problems -- A Literature Review of Bayes’ Theorem and Bayesian Belief Networks (BBN) -- Statistical Properties of Bayes’ Theorem -- Bayes Belief Networks (BBN) Experimental Protocol -- Manufacturing Example -- Political Science Example -- Gambling Example -- Publicly Traded Company Default Example -- Insurance Risk Levels Example -- Acts of Terrorism Example -- Currency Wars Example -- College Entrance Exams Example -- Special Forces Assessment and Selection (SFAS) One-Stage Example -- Special Forces Assessment and Selection (SFAS) Two-Stage Example. | |
520 | _aStrategic Economic Decision-Making: Using Bayesian Belief Networks to Solve Complex Problems is a quick primer on the topic that introduces readers to the basic complexities and nuances associated with learning Bayes’ theory and inverse probability for the first time. This brief is meant for non-statisticians who are unfamiliar with Bayes’ theorem, walking them through the theoretical phases of set and sample set selection, the axioms of probability, probability theory as it pertains to Bayes’ theorem, and posterior probabilities. All of these concepts are explained as they appear in the methodology of fitting a Bayes’ model, and upon completion of the text readers will be able to mathematically determine posterior probabilities of multiple independent nodes across any system available for study. Very little has been published in the area of discrete Bayes’ theory, and this brief will appeal to non-statisticians conducting research in the fields of engineering, computing, life sciences, and social sciences. | ||
590 | _aPara consulta fuera de la UANL se requiere clave de acceso remoto. | ||
710 | 2 |
_aSpringerLink (Servicio en línea) _9299170 |
|
776 | 0 | 8 |
_iEdición impresa: _z9781461460398 |
856 | 4 | 0 |
_uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-1-4614-6040-4 _zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL) |
942 | _c14 | ||
999 |
_c287830 _d287830 |