000 03310nam a22003855i 4500
001 288028
003 MX-SnUAN
005 20160429154611.0
007 cr nn 008mamaa
008 150903s2013 xxu| o |||| 0|eng d
020 _a9781461456681
_99781461456681
024 7 _a10.1007/9781461456681
_2doi
035 _avtls000341692
039 9 _a201509030334
_bVLOAD
_c201405050232
_dVLOAD
_y201402061105
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aR858-R859.7
100 1 _aGkoulalas-Divanis, Aris.
_eautor
_9313187
245 1 0 _aAnonymization of Electronic Medical Records to Support Clinical Analysis /
_cby Aris Gkoulalas-Divanis, Grigorios Loukides.
264 1 _aNew York, NY :
_bSpringer New York :
_bImprint: Springer,
_c2013.
300 _axv, 72 páginas 23 ilustraciones
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aSpringerBriefs in Electrical and Computer Engineering,
_x2191-8112
500 _aSpringer eBooks
505 0 _aIntroduction -- Overview of patient data anonymization -- Re-identification of clinical data through diagnosis information -- Preventing re-identification while supporting GWAS -- Case study on electronic medical records data -- Conclusions and open research challenges -- Index.
520 _aAnonymization of Electronic Medical Records to Support Clinical Analysis closely examines the privacy threats that may arise from medical data sharing, and surveys the state-of-the-art methods developed to safeguard data against these threats. To motivate the need for computational methods, the book first explores the main challenges facing the privacy-protection of medical data using the existing policies, practices and regulations. Then, it takes an in-depth look at the popular computational privacy-preserving methods that have been developed for demographic, clinical and genomic data sharing, and closely analyzes the privacy principles behind these methods, as well as the optimization and algorithmic strategies that they employ. Finally, through a series of in-depth case studies that highlight data from the US Census as well as the Vanderbilt University Medical Center, the book outlines a new, innovative class of privacy-preserving methods designed to ensure the integrity of transferred medical data for subsequent analysis, such as discovering or validating associations between clinical and genomic information. Anonymization of Electronic Medical Records to Support Clinical Analysis is intended for professionals as a reference guide for safeguarding the privacy and data integrity of sensitive medical records. Academics and other research scientists will also find the book invaluable.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
700 1 _aLoukides, Grigorios.
_eautor
_9317559
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9781461456674
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-1-4614-5668-1
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c288028
_d288028