000 | 03210nam a22003855i 4500 | ||
---|---|---|---|
001 | 288079 | ||
003 | MX-SnUAN | ||
005 | 20160429154614.0 | ||
007 | cr nn 008mamaa | ||
008 | 150903s2013 xxu| o |||| 0|eng d | ||
020 |
_a9781461458081 _99781461458081 |
||
024 | 7 |
_a10.1007/9781461458081 _2doi |
|
035 | _avtls000341735 | ||
039 | 9 |
_a201509030337 _bVLOAD _c201405050233 _dVLOAD _y201402061106 _zstaff |
|
040 |
_aMX-SnUAN _bspa _cMX-SnUAN _erda |
||
050 | 4 | _aQA401-425 | |
100 | 1 |
_aErvedoza, Sylvain. _eautor _9317643 |
|
245 | 1 | 0 |
_aNumerical Approximation of Exact Controls for Waves / _cby Sylvain Ervedoza, Enrique Zuazua. |
264 | 1 |
_aNew York, NY : _bSpringer New York : _bImprint: Springer, _c2013. |
|
300 |
_axvii, 122 páginas 17 ilustraciones, 3 ilustraciones en color. _brecurso en línea. |
||
336 |
_atexto _btxt _2rdacontent |
||
337 |
_acomputadora _bc _2rdamedia |
||
338 |
_arecurso en línea _bcr _2rdacarrier |
||
347 |
_aarchivo de texto _bPDF _2rda |
||
490 | 0 |
_aSpringerBriefs in Mathematics, _x2191-8198 |
|
500 | _aSpringer eBooks | ||
505 | 0 | _a1.Numerical approximation of exact controls for waves -- 2.The discrete 1-d wave equation -- 3.Convergence for homogeneous boundary conditions -- 4.Convergence with non-homogeneous data -- 5. Further comments and open problems -- References. | |
520 | _aThis book is devoted to fully developing and comparing the two main approaches to the numerical approximation of controls for wave propagation phenomena: the continuous and the discrete. This is accomplished in the abstract functional setting of conservative semigroups.The main results of the work unify, to a large extent, these two approaches, which yield similaralgorithms and convergence rates. The discrete approach, however, gives not only efficient numerical approximations of the continuous controls, but also ensures some partial controllability properties of the finite-dimensional approximated dynamics. Moreover, it has the advantage of leading to iterative approximation processes that converge without a limiting threshold in the number of iterations. Such a threshold, which is hard to compute and estimate in practice, is a drawback of the methods emanating from the continuous approach. To complement this theory, the book provides convergence results for the discrete wave equation when discretized using finite differences and proves the convergence of the discrete wave equation with non-homogeneous Dirichlet conditions. The first book to explore these topics in depth, "On the Numerical Approximations of Controls for Waves" has rich applications to data assimilation problems and will be of interest to researchers who deal with wave approximations. | ||
590 | _aPara consulta fuera de la UANL se requiere clave de acceso remoto. | ||
700 | 1 |
_aZuazua, Enrique. _eautor _9317644 |
|
710 | 2 |
_aSpringerLink (Servicio en línea) _9299170 |
|
776 | 0 | 8 |
_iEdición impresa: _z9781461458074 |
856 | 4 | 0 |
_uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-1-4614-5808-1 _zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL) |
942 | _c14 | ||
999 |
_c288079 _d288079 |