000 03210nam a22003855i 4500
001 288079
003 MX-SnUAN
005 20160429154614.0
007 cr nn 008mamaa
008 150903s2013 xxu| o |||| 0|eng d
020 _a9781461458081
_99781461458081
024 7 _a10.1007/9781461458081
_2doi
035 _avtls000341735
039 9 _a201509030337
_bVLOAD
_c201405050233
_dVLOAD
_y201402061106
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQA401-425
100 1 _aErvedoza, Sylvain.
_eautor
_9317643
245 1 0 _aNumerical Approximation of Exact Controls for Waves /
_cby Sylvain Ervedoza, Enrique Zuazua.
264 1 _aNew York, NY :
_bSpringer New York :
_bImprint: Springer,
_c2013.
300 _axvii, 122 páginas 17 ilustraciones, 3 ilustraciones en color.
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aSpringerBriefs in Mathematics,
_x2191-8198
500 _aSpringer eBooks
505 0 _a1.Numerical approximation of exact controls for waves -- 2.The discrete 1-d wave equation -- 3.Convergence for homogeneous boundary conditions -- 4.Convergence with non-homogeneous data -- 5. Further comments and open problems -- References.
520 _aThis book is devoted to fully developing and comparing the two main approaches to the numerical approximation of controls for wave propagation phenomena: the continuous and the discrete. This is accomplished in the abstract functional setting of conservative semigroups.The main results of the work unify, to a large extent, these two approaches, which yield similaralgorithms and convergence rates. The discrete approach, however, gives not only efficient numerical approximations of the continuous controls, but also ensures some partial controllability properties of the finite-dimensional approximated dynamics. Moreover, it has the advantage of leading to iterative approximation processes that converge without a limiting threshold in the number of iterations. Such a threshold, which is hard to compute and estimate in practice, is a drawback of the methods emanating from the continuous approach. To complement this theory, the book provides convergence results for the discrete wave equation when discretized using finite differences and proves the convergence of the discrete wave equation with non-homogeneous Dirichlet conditions. The first book to explore these topics in depth, "On the Numerical Approximations of Controls for Waves" has rich applications to data assimilation problems and will be of interest to researchers who deal with wave approximations.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
700 1 _aZuazua, Enrique.
_eautor
_9317644
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9781461458074
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-1-4614-5808-1
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c288079
_d288079