000 | 03643nam a22003855i 4500 | ||
---|---|---|---|
001 | 288133 | ||
003 | MX-SnUAN | ||
005 | 20160429154616.0 | ||
007 | cr nn 008mamaa | ||
008 | 150903s2013 xxu| o |||| 0|eng d | ||
020 |
_a9781461464822 _99781461464822 |
||
024 | 7 |
_a10.1007/9781461464822 _2doi |
|
035 | _avtls000341921 | ||
039 | 9 |
_a201509030342 _bVLOAD _c201405050236 _dVLOAD _y201402061113 _zstaff |
|
040 |
_aMX-SnUAN _bspa _cMX-SnUAN _erda |
||
050 | 4 | _aQA564-609 | |
100 | 1 |
_aBogomolov, Fedor. _eeditor. _9305754 |
|
245 | 1 | 0 |
_aBirational Geometry, Rational Curves, and Arithmetic / _cedited by Fedor Bogomolov, Brendan Hassett, Yuri Tschinkel. |
264 | 1 |
_aNew York, NY : _bSpringer New York : _bImprint: Springer, _c2013. |
|
300 |
_axii, 320 páginas 21 ilustraciones _brecurso en línea. |
||
336 |
_atexto _btxt _2rdacontent |
||
337 |
_acomputadora _bc _2rdamedia |
||
338 |
_arecurso en línea _bcr _2rdacarrier |
||
347 |
_aarchivo de texto _bPDF _2rda |
||
500 | _aSpringer eBooks | ||
505 | 0 | _aForeword -- Introduction.- A. Bertram and I. Coskun, The birational geometry of the Hilbert scheme of points on surfaces -- F. Bogomolov and Ch. Böhning, Isoclinism and stable cohomology of wreath products -- F. Bogomolov, I. Karzhemanov, and K. Kuyumzhiyan, Unirationality and existence of infinitely transitive models -- I. Cheltsov, L. Katzarkov, and V. Przyjalkowski, Birational geometry via moduli spaces -- O. Debarre, Curves of low degrees on projective varieties -- S. Kebekus, Uniruledness criteria and applications -- S. Kovács, The cone of curves of K3 surfaces revisited -- V. Lazi?, Around and beyond the canonical class -- C. Liedtke, Algebraic surfaces in positive characteristic -- A. Varilly-Alvarado, Arithmetic of Del Pezzo surfaces. | |
520 | _aThis book features recent developments in a rapidly growing area at the interface of higher-dimensional birational geometry and arithmetic geometry. It focuses on the geometry of spaces of rational curves, with an emphasis on applications to arithmetic questions. Classically, arithmetic is the study of rational or integral solutions of diophantine equations and geometry is the study of lines and conics. From the modern standpoint, arithmetic is the study of rational and integral points on algebraic varieties over nonclosed fields. A major insight of the 20th century was that arithmetic properties of an algebraic variety are tightly linked to the geometry of rational curves on the variety and how they vary in families. This collection of solicited survey and research papers is intended to serve as an introduction for graduate students and researchers interested in entering the field, and as a source of reference for experts working on related problems. Topics that will be addressed include: birational properties such as rationality, unirationality, and rational connectedness, existence of rational curves in prescribed homology classes, cones of rational curves on rationally connected and Calabi-Yau varieties, as well as related questions within the framework of the Minimal Model Program. | ||
590 | _aPara consulta fuera de la UANL se requiere clave de acceso remoto. | ||
700 | 1 |
_aHassett, Brendan. _eeditor. _9317722 |
|
700 | 1 |
_aTschinkel, Yuri. _eeditor. _9305755 |
|
710 | 2 |
_aSpringerLink (Servicio en línea) _9299170 |
|
776 | 0 | 8 |
_iEdición impresa: _z9781461464815 |
856 | 4 | 0 |
_uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-1-4614-6482-2 _zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL) |
942 | _c14 | ||
999 |
_c288133 _d288133 |