000 03643nam a22003855i 4500
001 288133
003 MX-SnUAN
005 20160429154616.0
007 cr nn 008mamaa
008 150903s2013 xxu| o |||| 0|eng d
020 _a9781461464822
_99781461464822
024 7 _a10.1007/9781461464822
_2doi
035 _avtls000341921
039 9 _a201509030342
_bVLOAD
_c201405050236
_dVLOAD
_y201402061113
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQA564-609
100 1 _aBogomolov, Fedor.
_eeditor.
_9305754
245 1 0 _aBirational Geometry, Rational Curves, and Arithmetic /
_cedited by Fedor Bogomolov, Brendan Hassett, Yuri Tschinkel.
264 1 _aNew York, NY :
_bSpringer New York :
_bImprint: Springer,
_c2013.
300 _axii, 320 páginas 21 ilustraciones
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
500 _aSpringer eBooks
505 0 _aForeword -- Introduction.- A. Bertram and I. Coskun, The birational geometry of the Hilbert scheme of points on surfaces -- F. Bogomolov and Ch. Böhning, Isoclinism and stable cohomology of wreath products -- F. Bogomolov, I. Karzhemanov, and K. Kuyumzhiyan, Unirationality and existence of infinitely transitive models -- I. Cheltsov, L. Katzarkov, and V. Przyjalkowski, Birational geometry via moduli spaces -- O. Debarre, Curves of low degrees on projective varieties -- S. Kebekus, Uniruledness criteria and applications -- S. Kovács, The cone of curves of K3 surfaces revisited -- V. Lazi?, Around and beyond the canonical class -- C. Liedtke, Algebraic surfaces in positive characteristic -- A. Varilly-Alvarado, Arithmetic of Del Pezzo surfaces.
520 _aThis book features recent developments in a rapidly growing area at the interface of higher-dimensional birational geometry and arithmetic geometry.  It focuses on the geometry of spaces of rational curves, with an emphasis on applications to arithmetic questions.  Classically, arithmetic is the study of rational or integral solutions of diophantine equations and geometry is the study of lines and conics. From the modern standpoint, arithmetic is the study of rational and integral points on algebraic varieties over nonclosed fields. A major insight of the 20th century was that arithmetic properties of an algebraic variety are tightly linked to the geometry of rational curves on the variety and how they vary in families. This collection of solicited survey and research papers is intended to serve as an introduction for graduate students and researchers interested in entering the field, and as a source of reference for experts working on related problems. Topics that will be addressed include: birational properties such as rationality, unirationality, and rational connectedness, existence of rational curves in prescribed homology classes, cones of rational curves on rationally connected and Calabi-Yau varieties, as well as related questions within the framework of the Minimal Model Program.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
700 1 _aHassett, Brendan.
_eeditor.
_9317722
700 1 _aTschinkel, Yuri.
_eeditor.
_9305755
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9781461464815
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-1-4614-6482-2
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c288133
_d288133