000 | 03293nam a22003855i 4500 | ||
---|---|---|---|
001 | 288257 | ||
003 | MX-SnUAN | ||
005 | 20160429154621.0 | ||
007 | cr nn 008mamaa | ||
008 | 150903s2013 xxu| o |||| 0|eng d | ||
020 |
_a9781461458388 _99781461458388 |
||
024 | 7 |
_a10.1007/9781461458388 _2doi |
|
035 | _avtls000341744 | ||
039 | 9 |
_a201509030337 _bVLOAD _c201405050233 _dVLOAD _y201402061107 _zstaff |
|
040 |
_aMX-SnUAN _bspa _cMX-SnUAN _erda |
||
050 | 4 | _aQA276-280 | |
100 | 1 |
_aLange, Kenneth. _eautor _9313126 |
|
245 | 1 | 0 |
_aOptimization / _cby Kenneth Lange. |
250 | _a2nd ed. 2013. | ||
264 | 1 |
_aNew York, NY : _bSpringer New York : _bImprint: Springer, _c2013. |
|
300 |
_axvii, 529 páginas 19 ilustraciones, 3 ilustraciones en color. _brecurso en línea. |
||
336 |
_atexto _btxt _2rdacontent |
||
337 |
_acomputadora _bc _2rdamedia |
||
338 |
_arecurso en línea _bcr _2rdacarrier |
||
347 |
_aarchivo de texto _bPDF _2rda |
||
490 | 0 |
_aSpringer Texts in Statistics, _x1431-875X ; _v95 |
|
500 | _aSpringer eBooks | ||
505 | 0 | _aElementary Optimization -- The Seven C’s of Analysis -- The Gauge Integral -- Differentiation -- Karush-Kuhn-Tucker Theory -- Convexity -- Block Relaxation -- The MM Algorithm -- The EM Algorithm -- Newton’s Method and Scoring -- Conjugate Gradient and Quasi-Newton -- Analysis of Convergence -- Penalty and Barrier Methods -- Convex Calculus -- Feasibility and Duality -- Convex Minimization Algorithms -- The Calculus of Variations -- Appendix: Mathematical Notes -- References -- Index. | |
520 | _aFinite-dimensional optimization problems occur throughout the mathematical sciences. The majority of these problems cannot be solved analytically. This introduction to optimization attempts to strike a balance between presentation of mathematical theory and development of numerical algorithms. Building on students’ skills in calculus and linear algebra, the text provides a rigorous exposition without undue abstraction. Its stress on statistical applications will be especially appealing to graduate students of statistics and biostatistics. The intended audience also includes students in applied mathematics, computational biology, computer science, economics, and physics who want to see rigorous mathematics combined with real applications. In this second edition, the emphasis remains on finite-dimensional optimization. New material has been added on the MM algorithm, block descent and ascent, and the calculus of variations. Convex calculus is now treated in much greater depth. Advanced topics such as the Fenchel conjugate, subdifferentials, duality, feasibility, alternating projections, projected gradient methods, exact penalty methods, and Bregman iteration will equip students with the essentials for understanding modern data mining techniques in high dimensions. | ||
590 | _aPara consulta fuera de la UANL se requiere clave de acceso remoto. | ||
710 | 2 |
_aSpringerLink (Servicio en línea) _9299170 |
|
776 | 0 | 8 |
_iEdición impresa: _z9781461458371 |
856 | 4 | 0 |
_uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-1-4614-5838-8 _zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL) |
942 | _c14 | ||
999 |
_c288257 _d288257 |