000 03771nam a22003735i 4500
001 288754
003 MX-SnUAN
005 20160429154641.0
007 cr nn 008mamaa
008 150903s2012 xxu| o |||| 0|eng d
020 _a9781461438106
_99781461438106
024 7 _a10.1007/9781461438106
_2doi
035 _avtls000341118
039 9 _a201509030833
_bVLOAD
_c201405050224
_dVLOAD
_y201402061051
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQA241-247.5
100 1 _aAndrews, George E.
_eautor
_9302553
245 1 0 _aRamanujan's Lost Notebook :
_bPart III /
_cby George E. Andrews, Bruce C. Berndt.
264 1 _aNew York, NY :
_bSpringer New York :
_bImprint: Springer,
_c2012.
300 _axI, 435 páginas 4 ilustraciones
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
500 _aSpringer eBooks
505 0 _aPreface -- Introduction -- 1. Ranks and Cranks, Part I -- 2. Ranks and Cranks, Part II -- 3. Ranks and Cranks, Part III -- 4. Ramanujan's Unpublished Manuscript on the Partition and Tau Functions -- 5. Theorems about the Partition Function on Pages 189 and 182 -- 6. Congruences for Generalized Tau Functions on Page 178 -- 7. Ramanujan's Forty Identities for the Rogers-Ramanujan Functions -- 8. Circular Summation -- 9. Highly Composite Numbers -- Scratch Work -- Location Guide -- Provenance -- References.
520 _aIn the spring of 1976, George Andrews of Pennsylvania State University visited the library at Trinity College, Cambridge to examine the papers of the late G.N. Watson.  Among these papers, Andrews discovered a sheaf of 138 pages in the handwriting of Srinivasa Ramanujan. This manuscript was soon designated, "Ramanujan's lost notebook." Its discovery has frequently been deemed the mathematical equivalent of finding Beethoven's tenth symphony. This volume is the third of five volumes that the authors plan to write on Ramanujan’s lost notebook and other manuscripts and fragments found in The Lost Notebook and Other Unpublished Papers, published by Narosa in 1988.  The ordinary partition function p(n) is the focus of this third volume. In particular, ranks, cranks, and congruences for p(n) are in the spotlight. Other topics include the Ramanujan tau-function, the Rogers–Ramanujan functions, highly composite numbers, and sums of powers of theta functions. Review from the second volume: "Fans of Ramanujan's mathematics are sure to be delighted by this book. While some of the content is taken directly from published papers, most chapters contain new material and some previously published proofs have been improved. Many entries are just begging for further study and will undoubtedly be inspiring research for decades to come. The next installment in this series is eagerly awaited." - MathSciNet Review from the first volume: "Andrews and Berndt are to be congratulated on the job they are doing. This is the first step...on the way to an understanding of the work of the genius Ramanujan. It should act as an inspiration to future generations of mathematicians to tackle a job that will never be complete." - Gazette of the Australian Mathematical Society
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
700 1 _aBerndt, Bruce C.
_eautor
_9303495
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9781461438090
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-1-4614-3810-6
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c288754
_d288754