000 03570nam a22003975i 4500
001 288965
003 MX-SnUAN
005 20160429154652.0
007 cr nn 008mamaa
008 150903s2012 xxu| o |||| 0|eng d
020 _a9781461434559
_99781461434559
024 7 _a10.1007/9781461434559
_2doi
035 _avtls000341002
039 9 _a201509030831
_bVLOAD
_c201405050222
_dVLOAD
_y201402061049
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQA370-380
100 1 _aAgarwal, Ravi P.
_eautor
_9303350
245 1 0 _aNonoscillation Theory of Functional Differential Equations with Applications /
_cby Ravi P. Agarwal, Leonid Berezansky, Elena Braverman, Alexander Domoshnitsky.
264 1 _aNew York, NY :
_bSpringer New York,
_c2012.
300 _axv, 520 páginas 10 ilustraciones
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
500 _aSpringer eBooks
505 0 _a1. Introduction to Oscillation Theory -- 2. Scalar Delay Differential Equations on Semiaxes -- 3. Scalar Delay Differential Equations on Semiaxis with Positive and Negative Coefficients -- 4. Oscillation of Equations with a Distributed Delay -- 5. Scalar Advanced and Mixed Differential Equations on Semiaxes -- 6. Neutral Differential Equations -- 7. Second Order Delay Differential Equations -- 8. Second Order Delay Differential Equations with Damping Terms -- 9. Vector Delay Differential Equations -- 10. Linearized Methods for Nonlinear Equations with a Distributed Delay -- 11. Nonlinear Models - Modifications of Delay Logistic Equations -- 12. First Order Linear Delay Impulsive Differential Equation -- 13. Second Order Linear Delay Impulsive Differential Equations -- 14. Linearized Oscillation Theory for Nonlinear Delay Impulsive Equations -- 15. Maximum Principles and Nonoscillation Intervals for First Order Volterra Functional Differential Equations -- 16. Systems of Functional Differential Equations on Finite Intervals -- 17. Nonoscillation Interval for n-th Order Functional Differential Equations -- Appendix A -- Appendix B.
520 _aThis monograph explores nonoscillation and existence of positive solutions for functional differential equations and describes their applications to maximum principles, boundary value problems and stability of these equations. In view of this objective the volume considers a wide class of equations including, scalar equations and systems of different types,  equations with variable types of delays and equations with variable deviations of the argument. Each chapter includes an introduction and preliminaries, thus making it complete. Appendices at the end of the book cover reference material. Nonoscillation Theory of Functional Differential Equations with Applications is addressed to a wide audience of researchers in mathematics and practitioners.      
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
700 1 _aBerezansky, Leonid.
_eautor
_9318965
700 1 _aBraverman, Elena.
_eautor
_9318966
700 1 _aDomoshnitsky, Alexander.
_eautor
_9318967
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9781461434542
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-1-4614-3455-9
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c288965
_d288965