000 03655nam a22004215i 4500
001 290023
003 MX-SnUAN
005 20160429154732.0
007 cr nn 008mamaa
008 150903s2013 xxu| o |||| 0|eng d
020 _a9781461482833
_99781461482833
024 7 _a10.1007/9781461482833
_2doi
035 _avtls000342444
039 9 _a201509030853
_bVLOAD
_c201405050243
_dVLOAD
_y201402061126
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQA276-280
100 1 _aAbdi, Herve.
_eeditor.
_9320510
245 1 0 _aNew Perspectives in Partial Least Squares and Related Methods /
_cedited by Herve Abdi, Wynne W. Chin, Vincenzo Esposito Vinzi, Giorgio Russolillo, Laura Trinchera.
264 1 _aNew York, NY :
_bSpringer New York :
_bImprint: Springer,
_c2013.
300 _axxiii, 344 páginas 96 ilustraciones, 49 ilustraciones en color.
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aSpringer Proceedings in Mathematics & Statistics,
_x2194-1009 ;
_v56
500 _aSpringer eBooks
505 0 _aKeynotes -- Large Datasets and Genomics -- Brain Imaging -- Multiblock Data Modeling.
520 _aNew Perspectives in Partial Least Squares and Related Methods shares original, peer-reviewed research from presentations during the 2012 partial least squares methods meeting (PLS 2012). This was the 7th meeting in the series of PLS conferences and the first to take place in the USA. PLS is an abbreviation for Partial Least Squares and is also sometimes expanded as projection to latent structures. This is an approach for modeling relations between data matrices of different types of variables measured on the same set of objects. The twenty-two papers in this volume, which include three invited contributions from our keynote speakers, provide a comprehensive overview of the current state of the most advanced research related to PLS and related methods. Prominent scientists from around the world took part in PLS 2012 and their contributions covered the multiple dimensions of the partial least squares-based methods. These exciting theoretical developments ranged from partial least squares regression and correlation, component based path modeling to regularized regression and subspace visualization. In following the tradition of the six previous PLS meetings, these contributions also included a large variety of PLS approaches such as PLS metamodels, variable selection, sparse PLS regression, distance based PLS, significance vs. reliability, and non-linear PLS. Finally, these contributions applied PLS methods to data originating from the traditional econometric/economic data to genomics data, brain images, information systems, epidemiology, and chemical spectroscopy. Such a broad and comprehensive volume will also encourage new uses of PLS models in work by researchers and students in many fields.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
700 1 _aChin, Wynne W.
_eeditor.
_9320511
700 1 _aEsposito Vinzi, Vincenzo.
_eeditor.
_9320512
700 1 _aRussolillo, Giorgio.
_eeditor.
_9320513
700 1 _aTrinchera, Laura.
_eeditor.
_9320514
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9781461482826
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-1-4614-8283-3
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c290023
_d290023