000 03740nam a22003855i 4500
001 290256
003 MX-SnUAN
005 20160429154740.0
007 cr nn 008mamaa
008 150903s2014 xxu| o |||| 0|eng d
020 _a9781461479000
_99781461479000
024 7 _a10.1007/9781461479000
_2doi
035 _avtls000342326
039 9 _a201509030851
_bVLOAD
_c201405050242
_dVLOAD
_y201402061123
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQA276-280
100 1 _aNolan, Deborah.
_eautor
_9320882
245 1 0 _aXML and Web Technologies for Data Sciences with R /
_cby Deborah Nolan, Duncan Temple Lang.
264 1 _aNew York, NY :
_bSpringer New York :
_bImprint: Springer,
_c2014.
300 _axxiv, 663 páginas 65 ilustraciones, 51 ilustraciones en color.
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aUse R!,
_x2197-5736
500 _aSpringer eBooks
505 0 _aData Formats XML and JSON -- Web Technologies, Getting Data from the Web -- General XML Application Areas -- Bibliography -- General Index -- R Function and Parameter Index -- R Package Index -- R Class Index -- Colophon.
520 _aWeb technologies are increasingly relevant to scientists working with data, for both accessing data and creating rich dynamic and interactive displays.  The XML and JSON data formats are widely used in Web services, regular Web pages and JavaScript code, and visualization formats such as SVG and KML for Google Earth and Google Maps.  In addition, scientists use HTTP and other network protocols to scrape data from Web pages, access REST and SOAP Web Services, and interact with NoSQL databases and text search applications.  This book provides a practical hands-on introduction to these technologies, including high-level functions the authors have developed for data scientists.  It describes strategies and approaches for extracting data from HTML, XML, and JSON formats and how to programmatically access data from the Web.  Along with these general skills, the authors illustrate several applications that are relevant to data scientists, such as reading and writing spreadsheet documents both locally and via GoogleDocs, creating interactive and dynamic visualizations, displaying spatial-temporal displays with Google Earth, and generating code from descriptions of data structures to read and write data.  These topics demonstrate the rich possibilities and opportunities to do new things with these modern technologies.  The book contains many examples and case-studies that readers can use directly and adapt to their own work.  The authors have focused on the integration of these technologies with the R statistical computing environment.  However, the ideas and skills presented here are more general, and statisticians who use other computing environments will also find them relevant to their work. Deborah Nolan is Professor of Statistics at University of California, Berkeley. Duncan Temple Lang is Associate Professor of Statistics at University of California, Davis and has been a member of both the S and R development teams.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
700 1 _aTemple Lang, Duncan.
_eautor
_9320883
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9781461478997
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-1-4614-7900-0
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c290256
_d290256