000 03962nam a22003855i 4500
001 290709
003 MX-SnUAN
005 20170705134221.0
007 cr nn 008mamaa
008 150903s2011 xxk| o |||| 0|eng d
020 _a9781849961813
_99781849961813
024 7 _a10.1007/9781849961813
_2doi
035 _avtls000344650
039 9 _a201509030424
_bVLOAD
_c201405050310
_dVLOAD
_y201402061302
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aTP807-823
100 1 _aVassilopoulos, Anastasios P.
_eautor
_9321585
245 1 0 _aFatigue of Fiber-reinforced Composites /
_cby Anastasios P. Vassilopoulos, Thomas Keller.
264 1 _aLondon :
_bSpringer London,
_c2011.
300 _axiv, 238 páginas
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aEngineering Materials and Processes,
_x1619-0181
500 _aSpringer eBooks
505 0 _a1. Introduction to the Fatigue of Fiber-reinforced Polymer Composites -- 2. Experimental Characterization of Fiber-reinforced Composite Materials -- 3. Statistical Analysis of Fatigue Data -- 4. Modeling the Fatigue Behavior of Fiber-reinforced Composite Materials Under Constant Amplitude Loading -- 5. Fatigue of Adhesively-bonded GFRP Structural Joints -- 6. Macroscopic Fatigue Failure Theories for Multiaxial Stress States -- 7. Life Prediction Under Multiaxial Complex Stress States of Variable Amplitude.
520 _aFatigue has long been recognized as a mechanism that can provoke catastrophic material failure in structural applications and researchers are now turning to the development of prediction tools in order to reduce the cost of determining design criteria for any new material. Fatigue of Fiber-reinforced Composites explains these highly scientific subjects in a simple yet thorough way. Fatigue behavior of fiber-reinforced composite materials and structural components is described through the presentation of numerous experimental results. Many examples help the reader to visualize the failure modes of laminated composite materials and structural adhesively bonded joints. Theoretical models, based on these experimental data, are demonstrated and their capacity for fatigue life modeling and prediction is thoroughly assessed. Fatigue of Fiber-reinforced Composites gives the reader the opportunity to learn about methods for modeling the fatigue behavior of fiber-reinforced composites, about statistical analysis of experimental data, and about theories for life prediction under loading patterns that produce multiaxial fatigue stress states. The authors combine these theories to establish a complete design process that is able to predict fatigue life of fiber-reinforced composites under multiaxial, variable amplitude stress states. A classic design methodology is presented for demonstration and theoretical predictions are compared to experimental data from typical material systems used in the wind turbine rotor blade industry. Fatigue of Fiber-reinforced Composites also presents novel computational methods for modeling fatigue behavior of composite materials, such as artificial neural networks and genetic programming, as a promising alternative to the conventional methods. It is an ideal source of information for researchers and graduate students in mechanical engineering, civil engineering and materials science.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
700 1 _aKeller, Thomas.
_eautor
_9321586
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9781849961806
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-1-84996-181-3
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c290709
_d290709