000 03998nam a22003735i 4500
001 290713
003 MX-SnUAN
005 20160429154759.0
007 cr nn 008mamaa
008 150903s2010 xxk| o |||| 0|eng d
020 _a9781849963534
_99781849963534
024 7 _a10.1007/9781849963534
_2doi
035 _avtls000344704
039 9 _a201509030424
_bVLOAD
_c201405050311
_dVLOAD
_y201402061304
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aTJ212-225
100 1 _aOcampo-Martinez, Carlos.
_eautor
_9321594
245 1 0 _aModel Predictive Control of Wastewater Systems /
_cby Carlos Ocampo-Martinez.
264 1 _aLondon :
_bSpringer London,
_c2010.
300 _axxx, 217 páginas 69 ilustraciones, 21 ilustraciones en color.
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aAdvances in Industrial Control,
_x1430-9491
500 _aSpringer eBooks
505 0 _aBackground and Case Study Modelling -- Background -- Principles of the Mathematical Modelling of Sewer Networks -- Model Predictive Control of Sewer Networks -- Formulating the Model Predictive Control Problem -- Predictive Control Problem Formulation and Hybrid Systems -- Suboptimal Hybrid Model Predictive Control -- Fault-tolerance Capabilities of Model Predictive Control -- Model Predictive Control and Fault Tolerance -- Fault-tolerance Evaluation of Actuator Fault Configurations -- Concluding Remarks -- Concluding Remarks.
520 _aSewer networks are large-scale systems with many variables, complex dynamics and strongly nonlinear behaviour. Their control plays a fundamental role in the management of hydrological systems related to the natural water cycle, potentially avoiding flooding and sewer overflow in extreme weather. An adequate control scheme must deal with the complicated nature of sewer networks. Model Predictive Control of Wastewater Systems shows how sewage systems can be modelled and controlled within the framework of model predictive control (MPC). Several MPC-based strategies are proposed, accounting for the inherently complex dynamics and the multi-objective nature of the control required. The effect of system disturbance, represented by data from real rain episodes, on the performance of the control loop to which these strategies give rise is also accommodated. Complementary to these considerations is the incorporation of the closed-loop system within a fault-tolerant architecture and the study of faults in system actuators. Actuator faults are represented using hybrid modelling techniques, avoiding the loss of convexity of the related optimisation problem when the linear case is considered. The methods and control designs described in this book can easily be extrapolated to other complex systems of similar nature such as drinking-water networks and irrigation canals. A MATLAB® toolbox, created by the author and available for download from www.springer.com/ISBN will assist readers in implementing the MPC methods described within a sewer network. Model Predictive Control of Wastewater Systems will be of interest to academic researchers working with large-scale and complex systems and studying the applications of model-predictive, hybrid and fault-tolerant control. Control engineers employed in industries associated with water management will find this book a most useful resource for suggesting improvements in the control algorithms they employ.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9781849963527
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-1-84996-353-4
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c290713
_d290713