000 | 03160nam a22003855i 4500 | ||
---|---|---|---|
001 | 290914 | ||
003 | MX-SnUAN | ||
005 | 20160429154819.0 | ||
007 | cr nn 008mamaa | ||
008 | 150903s2008 xxk| o |||| 0|eng d | ||
020 |
_a9781848001855 _99781848001855 |
||
024 | 7 |
_a10.1007/9781848001855 _2doi |
|
035 | _avtls000344203 | ||
039 | 9 |
_a201509030354 _bVLOAD _c201405050304 _dVLOAD _y201402061250 _zstaff |
|
040 |
_aMX-SnUAN _bspa _cMX-SnUAN _erda |
||
050 | 4 | _aQA241-247.5 | |
100 | 1 |
_aSchoof, René. _eautor _9305807 |
|
245 | 1 | 0 |
_aCatalan's Conjecture / _cby René Schoof. |
250 | _a1. | ||
264 | 1 |
_aLondon : _bSpringer London : _bImprint: Springer, _c2008. |
|
300 |
_aIx, 124 páginas 10 ilustraciones _brecurso en línea. |
||
336 |
_atexto _btxt _2rdacontent |
||
337 |
_acomputadora _bc _2rdamedia |
||
338 |
_arecurso en línea _bcr _2rdacarrier |
||
347 |
_aarchivo de texto _bPDF _2rda |
||
490 | 0 |
_aUniversitext, _x0172-5939 |
|
500 | _aSpringer eBooks | ||
505 | 0 | _aThe Case “q = 2” -- The Case “p = 2” -- The Nontrivial Solution -- Runge’s Method -- Cassels’ theorem -- An Obstruction Group -- Small p or q -- The Stickelberger Ideal -- The Double Wieferich Criterion -- The Minus Argument -- The Plus Argument I -- Semisimple Group Rings -- The Plus Argument II -- The Density Theorem -- Thaine’s Theorem. | |
520 | _aEugène Charles Catalan made his famous conjecture – that 8 and 9 are the only two consecutive perfect powers of natural numbers – in 1844 in a letter to the editor of Crelle’s mathematical journal. One hundred and fifty-eight years later, Preda Mihailescu proved it. Catalan’s Conjecture presents this spectacular result in a way that is accessible to the advanced undergraduate. The first few sections of the book require little more than a basic mathematical background and some knowledge of elementary number theory, while later sections involve Galois theory, algebraic number theory and a small amount of commutative algebra. The prerequisites, such as the basic facts from the arithmetic of cyclotomic fields, are all discussed within the text. The author dissects both Mihailescu’s proof and the earlier work it made use of, taking great care to select streamlined and transparent versions of the arguments and to keep the text self-contained. Only in the proof of Thaine’s theorem is a little class field theory used; it is hoped that this application will motivate the interested reader to study the theory further. Beautifully clear and concise, this book will appeal not only to specialists in number theory but to anyone interested in seeing the application of the ideas of algebraic number theory to a famous mathematical problem. | ||
590 | _aPara consulta fuera de la UANL se requiere clave de acceso remoto. | ||
710 | 2 |
_aSpringerLink (Servicio en línea) _9299170 |
|
776 | 0 | 8 |
_iEdición impresa: _z9781848001848 |
856 | 4 | 0 |
_uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-1-84800-185-5 _zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL) |
942 | _c14 | ||
999 |
_c290914 _d290914 |