000 03160nam a22003855i 4500
001 290914
003 MX-SnUAN
005 20160429154819.0
007 cr nn 008mamaa
008 150903s2008 xxk| o |||| 0|eng d
020 _a9781848001855
_99781848001855
024 7 _a10.1007/9781848001855
_2doi
035 _avtls000344203
039 9 _a201509030354
_bVLOAD
_c201405050304
_dVLOAD
_y201402061250
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQA241-247.5
100 1 _aSchoof, René.
_eautor
_9305807
245 1 0 _aCatalan's Conjecture /
_cby René Schoof.
250 _a1.
264 1 _aLondon :
_bSpringer London :
_bImprint: Springer,
_c2008.
300 _aIx, 124 páginas 10 ilustraciones
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aUniversitext,
_x0172-5939
500 _aSpringer eBooks
505 0 _aThe Case “q = 2” -- The Case “p = 2” -- The Nontrivial Solution -- Runge’s Method -- Cassels’ theorem -- An Obstruction Group -- Small p or q -- The Stickelberger Ideal -- The Double Wieferich Criterion -- The Minus Argument -- The Plus Argument I -- Semisimple Group Rings -- The Plus Argument II -- The Density Theorem -- Thaine’s Theorem.
520 _aEugène Charles Catalan made his famous conjecture – that 8 and 9 are the only two consecutive perfect powers of natural numbers – in 1844 in a letter to the editor of Crelle’s mathematical journal. One hundred and fifty-eight years later, Preda Mihailescu proved it. Catalan’s Conjecture presents this spectacular result in a way that is accessible to the advanced undergraduate. The first few sections of the book require little more than a basic mathematical background and some knowledge of elementary number theory, while later sections involve Galois theory, algebraic number theory and a small amount of commutative algebra. The prerequisites, such as the basic facts from the arithmetic of cyclotomic fields, are all discussed within the text. The author dissects both Mihailescu’s proof and the earlier work it made use of, taking great care to select streamlined and transparent versions of the arguments and to keep the text self-contained. Only in the proof of Thaine’s theorem is a little class field theory used; it is hoped that this application will motivate the interested reader to study the theory further. Beautifully clear and concise, this book will appeal not only to specialists in number theory but to anyone interested in seeing the application of the ideas of algebraic number theory to a famous mathematical problem.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9781848001848
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-1-84800-185-5
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c290914
_d290914