000 | 02781nam a22003735i 4500 | ||
---|---|---|---|
001 | 291080 | ||
003 | MX-SnUAN | ||
005 | 20160429154829.0 | ||
007 | cr nn 008mamaa | ||
008 | 150903s2010 xxk| o |||| 0|eng d | ||
020 |
_a9781848822429 _99781848822429 |
||
024 | 7 |
_a10.1007/9781848822429 _2doi |
|
035 | _avtls000344395 | ||
039 | 9 |
_a201509030403 _bVLOAD _c201405050306 _dVLOAD _y201402061255 _zstaff |
|
040 |
_aMX-SnUAN _bspa _cMX-SnUAN _erda |
||
050 | 4 | _aQA150-272 | |
100 | 1 |
_aKnebusch, Manfred. _eautor _9322184 |
|
245 | 1 | 0 |
_aSpecialization of Quadratic and Symmetric Bilinear Forms / _cby Manfred Knebusch. |
264 | 1 |
_aLondon : _bSpringer London : _bImprint: Springer, _c2010. |
|
300 |
_axiv, 192 páginas _brecurso en línea. |
||
336 |
_atexto _btxt _2rdacontent |
||
337 |
_acomputadora _bc _2rdamedia |
||
338 |
_arecurso en línea _bcr _2rdacarrier |
||
347 |
_aarchivo de texto _bPDF _2rda |
||
490 | 0 |
_aAlgebra and Applications, _x1572-5553 ; _v11 |
|
500 | _aSpringer eBooks | ||
505 | 0 | _aFundamentals of Specialization Theory -- Generic Splitting Theory -- Some Applications -- Specialization with Respect to Quadratic Places. | |
520 | _aThe specialization theory of quadratic and symmetric bilinear forms over fields and the subsequent generic splitting theory of quadratic forms were invented by the author in the mid-1970's. They came to fruition in the ensuing decades and have become an integral part of the geometric methods in quadratic form theory. This book comprehensively covers the specialization and generic splitting theories. These theories, originally developed mainly for fields of characteristic different from 2, are explored here without this restriction. In this book, a quadratic form ? over a field of characteristic 2 is allowed to have a big quasilinear part QL(?) (defined as the restriction of ? to the radical of the bilinear form associated to ?), while in most of the literature QL(?) is assumed to have dimension at most 1. Of course, in nature, quadratic forms with a big quasilinear part abound. In addition to chapters on specialization theory, generic splitting theory and their applications, the book's final chapter contains research never before published on specialization with respect to quadratic places and will provide the reader with a glimpse towards the future. | ||
590 | _aPara consulta fuera de la UANL se requiere clave de acceso remoto. | ||
710 | 2 |
_aSpringerLink (Servicio en línea) _9299170 |
|
776 | 0 | 8 |
_iEdición impresa: _z9781848822412 |
856 | 4 | 0 |
_uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-1-84882-242-9 _zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL) |
942 | _c14 | ||
999 |
_c291080 _d291080 |