000 02781nam a22003735i 4500
001 291080
003 MX-SnUAN
005 20160429154829.0
007 cr nn 008mamaa
008 150903s2010 xxk| o |||| 0|eng d
020 _a9781848822429
_99781848822429
024 7 _a10.1007/9781848822429
_2doi
035 _avtls000344395
039 9 _a201509030403
_bVLOAD
_c201405050306
_dVLOAD
_y201402061255
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQA150-272
100 1 _aKnebusch, Manfred.
_eautor
_9322184
245 1 0 _aSpecialization of Quadratic and Symmetric Bilinear Forms /
_cby Manfred Knebusch.
264 1 _aLondon :
_bSpringer London :
_bImprint: Springer,
_c2010.
300 _axiv, 192 páginas
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aAlgebra and Applications,
_x1572-5553 ;
_v11
500 _aSpringer eBooks
505 0 _aFundamentals of Specialization Theory -- Generic Splitting Theory -- Some Applications -- Specialization with Respect to Quadratic Places.
520 _aThe specialization theory of quadratic and symmetric bilinear forms over fields and the subsequent generic splitting theory of quadratic forms were invented by the author in the mid-1970's. They came to fruition in the ensuing decades and have become an integral part of the geometric methods in quadratic form theory. This book comprehensively covers the specialization and generic splitting theories. These theories, originally developed mainly for fields of characteristic different from 2, are explored here without this restriction. In this book, a quadratic form ? over a field of characteristic 2 is allowed to have a big quasilinear part QL(?) (defined as the restriction of ? to the radical of the bilinear form associated to ?), while in most of the literature QL(?) is assumed to have dimension at most 1. Of course, in nature, quadratic forms with a big quasilinear part abound. In addition to chapters on specialization theory, generic splitting theory and their applications, the book's final chapter contains research never before published on specialization with respect to quadratic places and will provide the reader with a glimpse towards the future.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9781848822412
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-1-84882-242-9
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c291080
_d291080