000 03969nam a22003975i 4500
001 291082
003 MX-SnUAN
005 20170705134222.0
007 cr nn 008mamaa
008 150903s2009 xxk| o |||| 0|eng d
020 _a9781848824911
_99781848824911
024 7 _a10.1007/9781848824911
_2doi
035 _avtls000344451
039 9 _a201509030407
_bVLOAD
_c201405050307
_dVLOAD
_y201402061257
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aT385
100 1 _aHyvärinen, Aapo.
_eautor
_9322188
245 1 0 _aNatural Image Statistics :
_bA Probabilistic Approach to Early Computational Vision /
_cby Aapo Hyvärinen, Jarmo Hurri, Patrik O. Hoyer.
264 1 _aLondon :
_bSpringer London,
_c2009.
300 _axIx, 448 páginas
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aComputational Imaging and Vision,
_x1381-6446 ;
_v39
500 _aSpringer eBooks
505 0 _aBackground -- Linear Filters and Frequency Analysis -- Outline of the Visual System -- Multivariate Probability and Statistics -- Statistics of Linear Features -- Principal Components and Whitening -- Sparse Coding and Simple Cells -- Independent Component Analysis -- Information-Theoretic Interpretations -- Nonlinear Features and Dependency of Linear Features -- Energy Correlation of Linear Features and Normalization -- Energy Detectors and Complex Cells -- Energy Correlations and Topographic Organization -- Dependencies of Energy Detectors: Beyond V1 -- Overcomplete and Non-negative Models -- Lateral Interactions and Feedback -- Time, Color, and Stereo -- Color and Stereo Images -- Temporal Sequences of Natural Images -- Conclusion -- Conclusion and Future Prospects -- Appendix: Supplementary Mathematical Tools -- Optimization Theory and Algorithms -- Crash Course on Linear Algebra -- The Discrete Fourier Transform -- Estimation of Non-normalized Statistical Models.
520 _aOne of the most successful frameworks in computational neuroscience is modelling visual processing using the statistical structure of natural images. In this framework, the visual system of the brain constructs a model of the statistical regularities of the incoming visual data. This enables the visual system to perform efficient probabilistic inference. The same framework is also very useful in engineering applications such as image processing and computer vision. This book is the first comprehensive introduction to the multidisciplinary field of natural image statistics and its intention is to present a general theory of early vision and image processing in a manner that can be approached by readers from a variety of scientific backgrounds. A wealth of relevant background material is presented in the first section as an introduction to the subject. Following this are five unique sections, carefully selected so as to give a clear overview of all the basic theory, as well as the most recent developments and research. This structure, together with the included exercises and computer assignments, also make it an excellent textbook. Natural Image Statistics is a timely and valuable resource for advanced students and researchers in any discipline related to vision, such as neuroscience, computer science, psychology, electrical engineering, cognitive science or statistics.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
700 1 _aHurri, Jarmo.
_eautor
_9322189
700 1 _aHoyer, Patrik O.
_eautor
_9322190
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9781848824904
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-1-84882-491-1
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c291082
_d291082