000 03390nam a22003735i 4500
001 291170
003 MX-SnUAN
005 20170705134222.0
007 cr nn 008mamaa
008 150903s2009 xxk| o |||| 0|eng d
020 _a9781848825093
_99781848825093
024 7 _a10.1007/9781848825093
_2doi
035 _avtls000344457
039 9 _a201509030407
_bVLOAD
_c201405050307
_dVLOAD
_y201402061257
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aTJ210.2-211.495
100 1 _aFehlman, William L.
_eautor
_9322336
245 1 0 _aMobile Robot Navigation with Intelligent Infrared Image Interpretation /
_cby William L. Fehlman, Mark K. Hinders.
264 1 _aLondon :
_bSpringer London,
_c2009.
300 _axxx, 274 páginas 86 ilustraciones
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
500 _aSpringer eBooks
505 0 _aand Overview -- Data Acquisition -- Thermal Feature Generation -- Thermal Feature Selection -- Adaptive Bayesian Classification Model -- Conclusions and Future Research Directions.
520 _aMobile robots require the ability to make decisions such as "go through the hedges" or "go around the brick wall." Mobile Robot Navigation with Intelligent Infrared Image Interpretation describes in detail an alternative to GPS navigation: a physics-based adaptive Bayesian pattern classification model that uses a passive thermal infrared imaging system to automatically characterize non-heat generating objects in unstructured outdoor environments for mobile robots. The resulting classification model complements an autonomous robot’s situational awareness by providing the ability to classify smaller structures commonly found in the immediate operational environment. The approach described in this book is an application of Bayesian statistical pattern classification where learning involves labeled classes of data (supervised classification), assumes no formal structure regarding the density of the data in the classes (nonparametric density estimation), and makes direct use of prior knowledge regarding an object class’s existence in a robot’s immediate area of operation when making decisions regarding class assignments for unknown objects. The result is a novel classification model which not only displays exceptional performance in characterizing non-heat generating outdoor objects in thermal scenes, but also outperforms the traditional KNN and Parzen classifiers. Mobile Robot Navigation with Intelligent Infrared Image Interpretation will be of interest to researchers and developers of advanced mobile robots in academic, industrial and military sectors. Advanced undergraduates studying robot sensor interpretation, pattern classification or infrared physics will also appreciate this book.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
700 1 _aHinders, Mark K.
_eautor
_9322337
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9781848825086
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-1-84882-509-3
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c291170
_d291170