000 | 03222nam a22003735i 4500 | ||
---|---|---|---|
001 | 291178 | ||
003 | MX-SnUAN | ||
005 | 20160429154835.0 | ||
007 | cr nn 008mamaa | ||
008 | 150903s2009 xxk| o |||| 0|eng d | ||
020 |
_a9781848828162 _99781848828162 |
||
024 | 7 |
_a10.1007/9781848828162 _2doi |
|
035 | _avtls000344542 | ||
039 | 9 |
_a201509030354 _bVLOAD _c201405050308 _dVLOAD _y201402061259 _zstaff |
|
040 |
_aMX-SnUAN _bspa _cMX-SnUAN _erda |
||
050 | 4 | _aT57-57.97 | |
100 | 1 |
_aWoodhouse, Nicholas. _eautor _9322347 |
|
245 | 1 | 0 |
_aIntroduction to Analytical Dynamics : _bRevised Edition / _cby Nicholas Woodhouse. |
264 | 1 |
_aLondon : _bSpringer London, _c2009. |
|
300 |
_axiii, 240 páginas 84 ilustraciones, 42 ilustraciones en color. _brecurso en línea. |
||
336 |
_atexto _btxt _2rdacontent |
||
337 |
_acomputadora _bc _2rdamedia |
||
338 |
_arecurso en línea _bcr _2rdacarrier |
||
347 |
_aarchivo de texto _bPDF _2rda |
||
490 | 0 |
_aSpringer Undergraduate Mathematics Series, _x1615-2085 |
|
500 | _aSpringer eBooks | ||
505 | 0 | _aFrames of Reference -- One Degree of Freedom -- Lagrangian Mechanics -- Noether’s Theorem -- Rigid Bodies -- Oscillations -- Hamiltonian Mechanics -- Geometry of Classical Mechanics -- Epilogue: Relativity and Quantum Theory. | |
520 | _aAnalytical dynamics forms an important part of any undergraduate programme in applied mathematics and physics: it develops intuition about three-dimensional space and provides invaluable practice in problem solving. First published in 1987, this text is an introduction to the core ideas. It offers concise but clear explanations and derivations to give readers a confident grasp of the chain of argument that leads from Newton’s laws through Lagrange’s equations and Hamilton’s principle, to Hamilton’s equations and canonical transformations. This new edition has been extensively revised and updated to include: A chapter on symplectic geometry and the geometric interpretation of some of the coordinate calculations. A more systematic treatment of the conections with the phase-plane analysis of ODEs; and an improved treatment of Euler angles. A greater emphasis on the links to special relativity and quantum theory, e.g., linking Schrödinger’s equation to Hamilton-Jacobi theory, showing how ideas from this classical subject link into contemporary areas of mathematics and theoretical physics. Aimed at second- and third-year undergraduates, the book assumes some familiarity with elementary linear algebra, the chain rule for partial derivatives, and vector mechanics in three dimensions, although the latter is not essential. A wealth of examples show the subject in action and a range of exercises – with solutions – are provided to help test understanding. | ||
590 | _aPara consulta fuera de la UANL se requiere clave de acceso remoto. | ||
710 | 2 |
_aSpringerLink (Servicio en línea) _9299170 |
|
776 | 0 | 8 |
_iEdición impresa: _z9781848828155 |
856 | 4 | 0 |
_uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-1-84882-816-2 _zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL) |
942 | _c14 | ||
999 |
_c291178 _d291178 |