000 03222nam a22003735i 4500
001 291178
003 MX-SnUAN
005 20160429154835.0
007 cr nn 008mamaa
008 150903s2009 xxk| o |||| 0|eng d
020 _a9781848828162
_99781848828162
024 7 _a10.1007/9781848828162
_2doi
035 _avtls000344542
039 9 _a201509030354
_bVLOAD
_c201405050308
_dVLOAD
_y201402061259
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aT57-57.97
100 1 _aWoodhouse, Nicholas.
_eautor
_9322347
245 1 0 _aIntroduction to Analytical Dynamics :
_bRevised Edition /
_cby Nicholas Woodhouse.
264 1 _aLondon :
_bSpringer London,
_c2009.
300 _axiii, 240 páginas 84 ilustraciones, 42 ilustraciones en color.
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aSpringer Undergraduate Mathematics Series,
_x1615-2085
500 _aSpringer eBooks
505 0 _aFrames of Reference -- One Degree of Freedom -- Lagrangian Mechanics -- Noether’s Theorem -- Rigid Bodies -- Oscillations -- Hamiltonian Mechanics -- Geometry of Classical Mechanics -- Epilogue: Relativity and Quantum Theory.
520 _aAnalytical dynamics forms an important part of any undergraduate programme in applied mathematics and physics: it develops intuition about three-dimensional space and provides invaluable practice in problem solving. First published in 1987, this text is an introduction to the core ideas. It offers concise but clear explanations and derivations to give readers a confident grasp of the chain of argument that leads from Newton’s laws through Lagrange’s equations and Hamilton’s principle, to Hamilton’s equations and canonical transformations. This new edition has been extensively revised and updated to include: A chapter on symplectic geometry and the geometric interpretation of some of the coordinate calculations. A more systematic treatment of the conections with the phase-plane analysis of ODEs; and an improved treatment of Euler angles. A greater emphasis on the links to special relativity and quantum theory, e.g., linking Schrödinger’s equation to Hamilton-Jacobi theory, showing how ideas from this classical subject link into contemporary areas of mathematics and theoretical physics. Aimed at second- and third-year undergraduates, the book assumes some familiarity with elementary linear algebra, the chain rule for partial derivatives, and vector mechanics in three dimensions, although the latter is not essential. A wealth of examples show the subject in action and a range of exercises – with solutions – are provided to help test understanding.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9781848828155
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-1-84882-816-2
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c291178
_d291178