000 03648nam a22003735i 4500
001 291188
003 MX-SnUAN
005 20160429154835.0
007 cr nn 008mamaa
008 150903s2010 xxk| o |||| 0|eng d
020 _a9781849962995
_99781849962995
024 7 _a10.1007/9781849962995
_2doi
035 _avtls000344686
039 9 _a201509030424
_bVLOAD
_c201405050310
_dVLOAD
_y201402061303
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQA184-205
100 1 _aButkovi?, Peter.
_eautor
_9322356
245 1 0 _aMax-linear Systems: Theory and Algorithms /
_cby Peter Butkovi?.
264 1 _aLondon :
_bSpringer London :
_bImprint: Springer,
_c2010.
300 _axviii, 274 páginas
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aSpringer Monographs in Mathematics,
_x1439-7382
500 _aSpringer eBooks
505 0 _aMax-algebra: Two Special Features -- One-sided Max-linear Systems and Max-algebraic Subspaces -- Eigenvalues and Eigenvectors -- Maxpolynomials. The Characteristic Maxpolynomial -- Linear Independence and Rank. The Simple Image Set -- Two-sided Max-linear Systems -- Reachability of Eigenspaces -- Generalized Eigenproblem -- Max-linear Programs -- Conclusions and Open Problems.
520 _aRecent years have seen a significant rise of interest in max-linear theory and techniques. In addition to providing the linear-algebraic background in the field of tropical mathematics, max-algebra provides mathematical theory and techniques for solving various nonlinear problems arising in areas such as manufacturing, transportation, allocation of resources and information processing technology. It is, therefore, a significant topic spanning both pure and applied mathematical fields. A welcome introduction to the subject of max-plus (tropical) linear algebra, and in particular algorithmic problems, Max-linear Systems: Theory and Algorithms offers a consolidation of both new and existing literature, thus filling a much-needed gap. Providing the fundamentals of max-algebraic theory in a comprehensive and unified form, in addition to more advanced material with an emphasis on feasibility and reachability, this book presents a number of new research results. Topics covered range from max-linear systems and the eigenvalue-eigenvector problem to periodic behavior of matrices, max-linear programs, linear independence, and matrix scaling. This book assumes no prior knowledge of max-algebra and much of the theoryis illustrated with numerical examples, complemented by exercises, and accompanied by both practical and theoretical applications. Open problems are also demonstrated. A fresh and pioneering approach to the topic of Max-linear Systems, this book will hold a wide-ranging readership, and will be useful for: • anyone with basic mathematical knowledge wishing to learn essential max-algebraic ideas and techniques • undergraduate and postgraduate students of mathematics or a related degree • mathematics researchers • mathematicians working in industry, commerce or management
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9781849962988
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-1-84996-299-5
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c291188
_d291188