000 | 03322nam a22003735i 4500 | ||
---|---|---|---|
001 | 291259 | ||
003 | MX-SnUAN | ||
005 | 20160429154840.0 | ||
007 | cr nn 008mamaa | ||
008 | 150903s2009 xxk| o |||| 0|eng d | ||
020 |
_a9781848823198 _99781848823198 |
||
024 | 7 |
_a10.1007/9781848823198 _2doi |
|
035 | _avtls000344414 | ||
039 | 9 |
_a201509030403 _bVLOAD _c201405050306 _dVLOAD _y201402061256 _zstaff |
|
040 |
_aMX-SnUAN _bspa _cMX-SnUAN _erda |
||
050 | 4 | _aQA404.7-405 | |
100 | 1 |
_aHelms, Lester L. _eeditor. _9322467 |
|
245 | 1 | 0 |
_aPotential Theory / _cedited by Lester L. Helms. |
264 | 1 |
_aLondon : _bSpringer London, _c2009. |
|
300 | _brecurso en línea. | ||
336 |
_atexto _btxt _2rdacontent |
||
337 |
_acomputadora _bc _2rdamedia |
||
338 |
_arecurso en línea _bcr _2rdacarrier |
||
347 |
_aarchivo de texto _bPDF _2rda |
||
490 | 0 |
_aUniversitext, _x0172-5939 |
|
500 | _aSpringer eBooks | ||
505 | 0 | _aPreliminaries -- Laplace's Equation -- The Dirichlet Problem -- Green Functions -- Negligible Sets -- Dirichlet Problem for Unbounded Regions -- Energy -- Interpolation and Monotonicity -- Newtonian Potential -- Elliptic Operators -- Apriori Bounds -- Oblique Derivative Problem. | |
520 | _aAimed at graduate students and researchers in mathematics, physics, and engineering, this book presents a clear path from calculus to classical potential theory and beyond, moving the reader into a fertile area of mathematical research as quickly as possible. The author revises and updates material from his classic work, Introduction to Potential Theory (1969), to provide a modern text that introduces all the important concepts of classical potential theory. In the first half of the book, the subject matter is developed meticulously from first principles using only calculus. Commencing with the inverse square law for gravitational and electromagnetic forces and the divergence theorem of the calculus, the author develops methods for constructing solutions of Laplace’s equation on a region with prescribed values on the boundary of the region. The second half addresses more advanced material aimed at those with a background of a senior undergraduate or beginning graduate course in real analysis. For specialized regions, namely spherical chips, solutions of Laplace’s equation are constructed having prescribed normal derivatives on the flat portion of the boundary and prescribed values on the remaining portion of the boundary. By means of transformations known as diffeomorphisms, these solutions are morphed into local solutions on regions with curved boundaries. The Perron-Weiner-Brelot method is then used to construct global solutions for elliptic partial differential equations involving a mixture of prescribed values of a boundary differential operator on part of the boundary and prescribed values on the remainder of the boundary. | ||
590 | _aPara consulta fuera de la UANL se requiere clave de acceso remoto. | ||
710 | 2 |
_aSpringerLink (Servicio en línea) _9299170 |
|
776 | 0 | 8 |
_iEdición impresa: _z9781848823181 |
856 | 4 | 0 |
_uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-1-84882-319-8 _zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL) |
942 | _c14 | ||
999 |
_c291259 _d291259 |