000 03322nam a22003735i 4500
001 291259
003 MX-SnUAN
005 20160429154840.0
007 cr nn 008mamaa
008 150903s2009 xxk| o |||| 0|eng d
020 _a9781848823198
_99781848823198
024 7 _a10.1007/9781848823198
_2doi
035 _avtls000344414
039 9 _a201509030403
_bVLOAD
_c201405050306
_dVLOAD
_y201402061256
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQA404.7-405
100 1 _aHelms, Lester L.
_eeditor.
_9322467
245 1 0 _aPotential Theory /
_cedited by Lester L. Helms.
264 1 _aLondon :
_bSpringer London,
_c2009.
300 _brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aUniversitext,
_x0172-5939
500 _aSpringer eBooks
505 0 _aPreliminaries -- Laplace's Equation -- The Dirichlet Problem -- Green Functions -- Negligible Sets -- Dirichlet Problem for Unbounded Regions -- Energy -- Interpolation and Monotonicity -- Newtonian Potential -- Elliptic Operators -- Apriori Bounds -- Oblique Derivative Problem.
520 _aAimed at graduate students and researchers in mathematics, physics, and engineering, this book presents a clear path from calculus to classical potential theory and beyond, moving the reader into a fertile area of mathematical research as quickly as possible. The author revises and updates material from his classic work, Introduction to Potential Theory (1969), to provide a modern text that introduces all the important concepts of classical potential theory. In the first half of the book, the subject matter is developed meticulously from first principles using only calculus. Commencing with the inverse square law for gravitational and electromagnetic forces and the divergence theorem of the calculus, the author develops methods for constructing solutions of Laplace’s equation on a region with prescribed values on the boundary of the region. The second half addresses more advanced material aimed at those with a background of a senior undergraduate or beginning graduate course in real analysis. For specialized regions, namely spherical chips, solutions of Laplace’s equation are constructed having prescribed normal derivatives on the flat portion of the boundary and prescribed values on the remaining portion of the boundary. By means of transformations known as diffeomorphisms, these solutions are morphed into local solutions on regions with curved boundaries. The Perron-Weiner-Brelot method is then used to construct global solutions for elliptic partial differential equations involving a mixture of prescribed values of a boundary differential operator on part of the boundary and prescribed values on the remainder of the boundary.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9781848823181
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-1-84882-319-8
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c291259
_d291259