000 | 03153nam a22003855i 4500 | ||
---|---|---|---|
001 | 291270 | ||
003 | MX-SnUAN | ||
005 | 20160429154840.0 | ||
007 | cr nn 008mamaa | ||
008 | 150903s2010 xxk| o |||| 0|eng d | ||
020 |
_a9781848829695 _99781848829695 |
||
024 | 7 |
_a10.1007/9781848829695 _2doi |
|
035 | _avtls000344584 | ||
039 | 9 |
_a201509030355 _bVLOAD _c201405050309 _dVLOAD _y201402061300 _zstaff |
|
040 |
_aMX-SnUAN _bspa _cMX-SnUAN _erda |
||
050 | 4 | _aT57-57.97 | |
100 | 1 |
_aBingham, N. H. _eautor _9322480 |
|
245 | 1 | 0 |
_aRegression : _bLinear Models in Statistics / _cby N. H. Bingham, John M. Fry. |
264 | 1 |
_aLondon : _bSpringer London : _bImprint: Springer, _c2010. |
|
300 |
_axiii, 284 páginas 50 ilustraciones _brecurso en línea. |
||
336 |
_atexto _btxt _2rdacontent |
||
337 |
_acomputadora _bc _2rdamedia |
||
338 |
_arecurso en línea _bcr _2rdacarrier |
||
347 |
_aarchivo de texto _bPDF _2rda |
||
490 | 0 |
_aSpringer Undergraduate Mathematics Series, _x1615-2085 |
|
500 | _aSpringer eBooks | ||
505 | 0 | _aLinear Regression -- The Analysis of Variance (ANOVA) -- Multiple Regression -- Further Multilinear Regression -- Adding additional covariates and the Analysis of Covariance -- Linear Hypotheses -- Model Checking and Transformation of Data -- Generalised Linear Models -- Other topics. | |
520 | _aRegression is the branch of Statistics in which a dependent variable of interest is modelled as a linear combination of one or more predictor variables, together with a random error. The subject is inherently two- or higher- dimensional, thus an understanding of Statistics in one dimension is essential. Regression: Linear Models in Statistics fills the gap between introductory statistical theory and more specialist sources of information. In doing so, it provides the reader with a number of worked examples, and exercises with full solutions. The book begins with simple linear regression (one predictor variable), and analysis of variance (ANOVA), and then further explores the area through inclusion of topics such as multiple linear regression (several predictor variables) and analysis of covariance (ANCOVA). The book concludes with special topics such as non-parametric regression and mixed models, time series, spatial processes and design of experiments. Aimed at 2nd and 3rd year undergraduates studying Statistics, Regression: Linear Models in Statistics requires a basic knowledge of (one-dimensional) Statistics, as well as Probability and standard Linear Algebra. Possible companions include John Haigh’s Probability Models, and T. S. Blyth & E.F. Robertsons’ Basic Linear Algebra and Further Linear Algebra. | ||
590 | _aPara consulta fuera de la UANL se requiere clave de acceso remoto. | ||
700 | 1 |
_aFry, John M. _eautor _9322481 |
|
710 | 2 |
_aSpringerLink (Servicio en línea) _9299170 |
|
776 | 0 | 8 |
_iEdición impresa: _z9781848829688 |
856 | 4 | 0 |
_uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-1-84882-969-5 _zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL) |
942 | _c14 | ||
999 |
_c291270 _d291270 |