000 02547nam a22003735i 4500
001 291287
003 MX-SnUAN
005 20160429154841.0
007 cr nn 008mamaa
008 150903s2010 xxk| o |||| 0|eng d
020 _a9781849965040
_99781849965040
024 7 _a10.1007/9781849965040
_2doi
035 _avtls000344742
039 9 _a201509030404
_bVLOAD
_c201405050311
_dVLOAD
_y201402061305
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQA251.5
100 1 _aLee, Gregory T.
_eautor
_9322504
245 1 0 _aGroup Identities on Units and Symmetric Units of Group Rings /
_cby Gregory T. Lee.
264 1 _aLondon :
_bSpringer London,
_c2010.
300 _axii, 196 páginas
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aAlgebra and Applications ;
_v12
500 _aSpringer eBooks
505 0 _aGroup Identities on Units of Group Rings -- Group Identities on Symmetric Units -- Lie Identities on Symmetric Elements -- Nilpotence of and.
520 _aLet FG be the group ring of a group G over a field F. Write U(FG) for the group of units of FG. It is an important problem to determine the conditions under which U(FG) satisfies a group identity. In the mid 1990s, a conjecture of Hartley was verified, namely, if U(FG) satisfies a group identity, and G is torsion, then FG satisfies a polynomial identity. Necessary and sufficient conditions for U(FG) to satisfy a group identity soon followed. Since the late 1990s, many papers have been devoted to the study of the symmetric units; that is, those units u satisfying u* = u, where * is the involution on FG defined by sending each element of G to its inverse. The conditions under which these symmetric units satisfy a group identity have now been determined. This book presents these results for arbitrary group identities, as well as the conditions under which the unit group or the set of symmetric units satisfies several particular group identities of interest.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9781849965033
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-1-84996-504-0
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c291287
_d291287