000 04205nam a22003855i 4500
001 291359
003 MX-SnUAN
005 20160429154852.0
007 cr nn 008mamaa
008 150903s2009 xxk| o |||| 0|eng d
020 _a9781848825338
_99781848825338
024 7 _a10.1007/9781848825338
_2doi
035 _avtls000344465
039 9 _a201509030407
_bVLOAD
_c201405050307
_dVLOAD
_y201402061257
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQA403.5-404.5
100 1 _aVolchkov, Valery V.
_eautor
_9322609
245 1 0 _aHarmonic Analysis of Mean Periodic Functions on Symmetric Spaces and the Heisenberg Group /
_cby Valery V. Volchkov, Vitaly V. Volchkov.
264 1 _aLondon :
_bSpringer London,
_c2009.
300 _brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aSpringer Monographs in Mathematics,
_x1439-7382
500 _aSpringer eBooks
505 0 _aSymmetric Spaces. Harmonic Analysis on Spheres -- General Considerations -- Analogues of the Beltrami–Klein Model for Rank One Symmetric Spaces of Noncompact Type -- Realizations of Rank One Symmetric Spaces of Compact Type -- Realizations of the Irreducible Components of the Quasi-Regular Representation of Groups Transitive on Spheres. Invariant Subspaces -- Non-Euclidean Analogues of Plane Waves -- Transformations with Generalized Transmutation Property Associated with Eigenfunctions Expansions -- Preliminaries -- Some Special Functions -- Exponential Expansions -- Multidimensional Euclidean Case -- The Case of Symmetric Spaces X=G/K of Noncompact Type -- The Case of Compact Symmetric Spaces -- The Case of Phase Space -- Mean Periodicity -- Mean Periodic Functions on Subsets of the Real Line -- Mean Periodic Functions on Multidimensional Domains -- Mean Periodic Functions on G/K -- Mean Periodic Functions on Compact Symmetric Spaces of Rank One -- Mean Periodicity on Phase Space and the Heisenberg Group -- Local Aspects of Spectral Analysis and the Exponential Representation Problem -- A New Look at the Schwartz Theory -- Recent Developments in the Spectral Analysis Problem for Higher Dimensions -- ????(X) Spectral Analysis on Domains of Noncompact Symmetric Spaces of Arbitrary Rank -- Spherical Spectral Analysis on Subsets of Compact Symmetric Spaces.
520 _aThis book presents the first systematic and unified treatment of the theory of mean periodic functions on homogeneous spaces. This area has its classical roots in the beginning of the twentieth century and is now a very active research area, having close connections to harmonic analysis, complex analysis, integral geometry, and analysis on symmetric spaces. The main purpose of this book is the study of local aspects of spectral analysis and spectral synthesis on Euclidean spaces, Riemannian symmetric spaces of an arbitrary rank and Heisenberg groups. The subject can be viewed as arising from three classical topics: John's support theorem, Schwartz's fundamental principle, and Delsarte's two-radii theorem. Highly topical, the book contains most of the significant recent results in this area with complete and detailed proofs. In order to make this book accessible to a wide audience, the authors have included an introductory section that develops analysis on symmetric spaces without the use of Lie theory. Challenging open problems are described and explained, and promising new research directions are indicated. Designed for both experts and beginners in the field, the book is rich in methods for a wide variety of problems in many areas of mathematics.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
700 1 _aVolchkov, Vitaly V.
_eautor
_9322610
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9781848825321
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-1-84882-533-8
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c291359
_d291359