000 | 03279nam a22003735i 4500 | ||
---|---|---|---|
001 | 291393 | ||
003 | MX-SnUAN | ||
005 | 20160429154854.0 | ||
007 | cr nn 008mamaa | ||
008 | 150903s2008 xxk| o |||| 0|eng d | ||
020 |
_a9781848002333 _99781848002333 |
||
024 | 7 |
_a10.1007/9781848002333 _2doi |
|
035 | _avtls000344227 | ||
039 | 9 |
_a201509030405 _bVLOAD _c201405050304 _dVLOAD _y201402061251 _zstaff |
|
040 |
_aMX-SnUAN _bspa _cMX-SnUAN _erda |
||
100 | 1 |
_aHuang, Biao. _eautor _9322123 |
|
245 | 1 | 0 |
_aDynamic Modeling, Predictive Control and Performance Monitoring : _bA Data-driven Subspace Approach / _cby Biao Huang, Ramesh Kadali. |
264 | 1 |
_aLondon : _bSpringer London, _c2008. |
|
300 | _brecurso en línea. | ||
336 |
_atexto _btxt _2rdacontent |
||
337 |
_acomputadora _bc _2rdamedia |
||
338 |
_arecurso en línea _bcr _2rdacarrier |
||
347 |
_aarchivo de texto _bPDF _2rda |
||
490 | 0 |
_aLecture Notes in Control and Information Sciences, _x0170-8643 ; _v374 |
|
500 | _aSpringer eBooks | ||
505 | 0 | _aI Dynamic Modeling through Subspace Identification -- System Identification: Conventional Approach -- Open-loop Subspace Identification -- Closed-loop Subspace Identification -- Identification of Dynamic Matrix and Noise Model Using Closed-loop Data -- II Predictive Control -- Model Predictive Control: Conventional Approach -- Data-driven Subspace Approach to Predictive Control -- III Control Performance Monitoring -- Control Loop Performance Assessment: Conventional Approach -- State-of-the-art MPC Performance Monitoring -- Subspace Approach to MIMO Feedback Control Performance Assessment -- Prediction Error Approach to Feedback Control Performance Assessment -- Performance Assessment with LQG-benchmark from Closed-loop Data. | |
520 | _aA typical design procedure for model predictive control or control performance monitoring consists of: 1. identification of a parametric or nonparametric model; 2. derivation of the output predictor from the model; 3. design of the control law or calculation of performance indices according to the predictor. Both design problems need an explicit model form and both require this three-step design procedure. Can this design procedure be simplified? Can an explicit model be avoided? With these questions in mind, the authors eliminate the first and second step of the above design procedure, a “data-driven” approach in the sense that no traditional parametric models are used; hence, the intermediate subspace matrices, which are obtained from the process data and otherwise identified as a first step in the subspace identification methods, are used directly for the designs. Without using an explicit model, the design procedure is simplified and the modelling error caused by parameterization is eliminated. | ||
590 | _aPara consulta fuera de la UANL se requiere clave de acceso remoto. | ||
700 | 1 |
_aKadali, Ramesh. _eautor _9322664 |
|
710 | 2 |
_aSpringerLink (Servicio en línea) _9299170 |
|
776 | 0 | 8 |
_iEdición impresa: _z9781848002326 |
856 | 4 | 0 |
_uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-1-84800-233-3 _zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL) |
942 | _c14 | ||
999 |
_c291393 _d291393 |