000 03279nam a22003735i 4500
001 291393
003 MX-SnUAN
005 20160429154854.0
007 cr nn 008mamaa
008 150903s2008 xxk| o |||| 0|eng d
020 _a9781848002333
_99781848002333
024 7 _a10.1007/9781848002333
_2doi
035 _avtls000344227
039 9 _a201509030405
_bVLOAD
_c201405050304
_dVLOAD
_y201402061251
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
100 1 _aHuang, Biao.
_eautor
_9322123
245 1 0 _aDynamic Modeling, Predictive Control and Performance Monitoring :
_bA Data-driven Subspace Approach /
_cby Biao Huang, Ramesh Kadali.
264 1 _aLondon :
_bSpringer London,
_c2008.
300 _brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aLecture Notes in Control and Information Sciences,
_x0170-8643 ;
_v374
500 _aSpringer eBooks
505 0 _aI Dynamic Modeling through Subspace Identification -- System Identification: Conventional Approach -- Open-loop Subspace Identification -- Closed-loop Subspace Identification -- Identification of Dynamic Matrix and Noise Model Using Closed-loop Data -- II Predictive Control -- Model Predictive Control: Conventional Approach -- Data-driven Subspace Approach to Predictive Control -- III Control Performance Monitoring -- Control Loop Performance Assessment: Conventional Approach -- State-of-the-art MPC Performance Monitoring -- Subspace Approach to MIMO Feedback Control Performance Assessment -- Prediction Error Approach to Feedback Control Performance Assessment -- Performance Assessment with LQG-benchmark from Closed-loop Data.
520 _aA typical design procedure for model predictive control or control performance monitoring consists of: 1. identification of a parametric or nonparametric model; 2. derivation of the output predictor from the model; 3. design of the control law or calculation of performance indices according to the predictor. Both design problems need an explicit model form and both require this three-step design procedure. Can this design procedure be simplified? Can an explicit model be avoided? With these questions in mind, the authors eliminate the first and second step of the above design procedure, a “data-driven” approach in the sense that no traditional parametric models are used; hence, the intermediate subspace matrices, which are obtained from the process data and otherwise identified as a first step in the subspace identification methods, are used directly for the designs. Without using an explicit model, the design procedure is simplified and the modelling error caused by parameterization is eliminated.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
700 1 _aKadali, Ramesh.
_eautor
_9322664
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9781848002326
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-1-84800-233-3
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c291393
_d291393