000 03434nam a22004455i 4500
001 291408
003 MX-SnUAN
005 20160429154855.0
007 cr nn 008mamaa
008 150903s2006 xxk| o |||| 0|eng d
020 _a9781846282546
_99781846282546
024 7 _a10.1007/1846282543
_2doi
035 _avtls000343768
039 9 _a201509030750
_bVLOAD
_c201404121001
_dVLOAD
_c201404090739
_dVLOAD
_y201402061204
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQA75.5-76.95
100 1 _aBöhm, Josef.
_eautor
_9322680
245 1 0 _aOptimized Bayesian Dynamic Advising :
_bTheory and Algorithms /
_cby Josef Böhm, Tatiana V. Guy, Ladislav Jirsa, Ivan Nagy, Petr Nedoma, Ludvík Tesa? ; edited by Miroslav Kárný.
264 1 _aLondon :
_bSpringer London,
_c2006.
300 _axv, 529 páginas 13 ilustraciones
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aAdvanced Information and Knowledge Processing
500 _aSpringer eBooks
505 0 _aUnderlying theory -- Approximate and feasible learning -- Approximate design -- Problem formulation -- Solution and principles of its approximation: learning part -- Solution and principles of its approximation: design part -- Learning with normal factors and components -- Design with normal mixtures -- Learning with Markov-chain factors and components -- Design with Markov-chain mixtures -- Sandwich BMTB for mixture initiation -- Mixed mixtures -- Applications of the advisory system -- Concluding remarks.
520 _aWritten by one of the world’s leading groups in the area of Bayesian identification, control and decision making, this book provides the theoretical and algorithmic basis of optimized probabilistic advising. Starting from abstract ideas and formulations, and culminating in detailed algorithms, Optimized Bayesian Dynamic Advising comprises a unified treatment of an important problem of the design of advisory systems supporting supervisors of complex processes. It introduces the theoretical and algorithmic basis of developed advising, relying on novel and powerful combination black-box modeling by dynamic mixture models and fully probabilistic dynamic optimization. The proposed non-standard problem formulation and its solution mark a significant contribution to the design of anthropocentric automation systems. Written for a broad audience, including developers of algorithms and application engineers, researchers, lecturers and postgraduates, this book can be used as a reference tool, and an advanced text on Bayesian dynamic decision making.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
700 1 _aGuy, Tatiana V.
_eautor
_9322681
700 1 _aJirsa, Ladislav.
_eautor
_9322682
700 1 _aNagy, Ivan.
_eautor
_9322683
700 1 _aNedoma, Petr.
_eautor
_9322684
700 1 _aTesa?, Ludvík.
_eautor
_9322685
700 1 _aKárný, Miroslav.
_eeditor.
_9322686
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9781852339289
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/1-84628-254-3
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c291408
_d291408