000 03471nam a22003615i 4500
001 291409
003 MX-SnUAN
005 20170705134223.0
007 cr nn 008mamaa
008 150903s2006 xxk| o |||| 0|eng d
020 _a9781846283291
_99781846283291
024 7 _a10.1007/1846283299
_2doi
035 _avtls000343807
039 9 _a201509030751
_bVLOAD
_c201404121006
_dVLOAD
_c201404090744
_dVLOAD
_y201402061205
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aTK5102.9
100 1 _aBroersen, Piet M. T.
_eautor
_9322687
245 1 0 _aAutomatic Autocorrelation and Spectral Analysis /
_cby Piet M. T. Broersen.
264 1 _aLondon :
_bSpringer London,
_c2006.
300 _axii, 298 páginas 104 ilustraciones
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
500 _aSpringer eBooks
505 0 _aBasic Concepts -- Periodogram and Lagged Product Autocorrelation -- ARMA Theory -- Relations for Time Series Models -- Estimation of Time Series Models -- AR Order Selection -- MA and ARMA Order Selection -- ARMASA Toolbox with Applications -- Advanced Topics in Time Series Estimation.
520 _aAutomatic Autocorrelation and Spectral Analysis gives random data a language to communicate the information they contain objectively. In the current practice of spectral analysis, subjective decisions have to be made all of which influence the final spectral estimate and mean that different analysts obtain different results from the same stationary stochastic observations. Statistical signal processing can overcome this difficulty, producing a unique solution for any set of observations but that solution is only acceptable if it is close to the best attainable accuracy for most types of stationary data. Automatic Autocorrelation and Spectral Analysis describes a method which fulfils the above near-optimal-solution criterion. It takes advantage of greater computing power and robust algorithms to produce enough candidate models to be sure of providing a suitable candidate for given data. Improved order selection quality guarantees that one of the best (and often the best) will be selected automatically. The data themselves suggest their best representation. Should the analyst wish to intervene, alternatives can be provided. Written for graduate signal processing students and for researchers and engineers using time series analysis for practical applications ranging from breakdown prevention in heavy machinery to measuring lung noise for medical diagnosis, this text offers: • tuition in how power spectral density and the autocorrelation function of stochastic data can be estimated and interpreted in time series models; • extensive support for the MATLAB® ARMAsel toolbox; • applications showing the methods in action; • appropriate mathematics for students to apply the methods with references for those who wish to develop them further.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9781846283284
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/1-84628-329-9
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c291409
_d291409