000 | 03084nam a22003615i 4500 | ||
---|---|---|---|
001 | 291425 | ||
003 | MX-SnUAN | ||
005 | 20160429154856.0 | ||
007 | cr nn 008mamaa | ||
008 | 150903s2007 xxk| o |||| 0|eng d | ||
020 |
_a9781846287664 _99781846287664 |
||
024 | 7 |
_a10.1007/9781846287664 _2doi |
|
035 | _avtls000344004 | ||
039 | 9 |
_a201509030357 _bVLOAD _c201405050301 _dVLOAD _y201402061245 _zstaff |
|
040 |
_aMX-SnUAN _bspa _cMX-SnUAN _erda |
||
050 | 4 | _aQA75.5-76.95 | |
100 | 1 |
_aBramer, Max. _eautor _9299798 |
|
245 | 1 | 0 |
_aPrinciples of Data Mining / _cby Max Bramer. |
264 | 1 |
_aLondon : _bSpringer London, _c2007. |
|
300 |
_ax, 344 páginas 200 ilustraciones _brecurso en línea. |
||
336 |
_atexto _btxt _2rdacontent |
||
337 |
_acomputadora _bc _2rdamedia |
||
338 |
_arecurso en línea _bcr _2rdacarrier |
||
347 |
_aarchivo de texto _bPDF _2rda |
||
500 | _aSpringer eBooks | ||
505 | 0 | _aData for Data Mining -- to Classification: Na¨ive Bayes and Nearest Neighbour -- Using Decision Trees for Classification -- Decision Tree Induction: Using Entropy for Attribute Selection -- Decision Tree Induction: Using Frequency Tables for Attribute Selection -- Estimating the Predictive Accuracy of a Classifier -- Continuous Attributes -- Avoiding Overfitting of Decision Trees -- More About Entropy -- Inducing Modular Rules for Classification -- Measuring the Performance of a Classifier -- Association Rule Mining I -- Association Rule Mining II -- Clustering -- Text Mining. | |
520 | _aData Mining, the automatic extraction of implicit and potentially useful information from data, is increasingly used in commercial, scientific and other application areas. This book explains and explores the principal techniques of Data Mining: for classification, generation of association rules and clustering. It is written for readers without a strong background in mathematics or statistics and focuses on detailed examples & explanations of the algorithms given. It can be used as a textbook to support courses at undergraduate or postgraduate levels in a wide range of subjects including Computer Science, Business Studies, Marketing, Artificial Intelligence, Bioinformatics and Forensic Science. As an aid to self study, this book aims to help the general reader develop the necessary understanding to use commercial data mining packages discriminatingly, as well as enabling the advanced reader or academic researcher to understand or contribute to future technical advances in the field. Each chapter has practical exercises to enable readers to check their progress. A full glossary of technical terms used is included. | ||
590 | _aPara consulta fuera de la UANL se requiere clave de acceso remoto. | ||
710 | 2 |
_aSpringerLink (Servicio en línea) _9299170 |
|
776 | 0 | 8 |
_iEdición impresa: _z9781846287657 |
856 | 4 | 0 |
_uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-1-84628-766-4 _zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL) |
942 | _c14 | ||
999 |
_c291425 _d291425 |