000 03084nam a22003615i 4500
001 291425
003 MX-SnUAN
005 20160429154856.0
007 cr nn 008mamaa
008 150903s2007 xxk| o |||| 0|eng d
020 _a9781846287664
_99781846287664
024 7 _a10.1007/9781846287664
_2doi
035 _avtls000344004
039 9 _a201509030357
_bVLOAD
_c201405050301
_dVLOAD
_y201402061245
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQA75.5-76.95
100 1 _aBramer, Max.
_eautor
_9299798
245 1 0 _aPrinciples of Data Mining /
_cby Max Bramer.
264 1 _aLondon :
_bSpringer London,
_c2007.
300 _ax, 344 páginas 200 ilustraciones
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
500 _aSpringer eBooks
505 0 _aData for Data Mining -- to Classification: Na¨ive Bayes and Nearest Neighbour -- Using Decision Trees for Classification -- Decision Tree Induction: Using Entropy for Attribute Selection -- Decision Tree Induction: Using Frequency Tables for Attribute Selection -- Estimating the Predictive Accuracy of a Classifier -- Continuous Attributes -- Avoiding Overfitting of Decision Trees -- More About Entropy -- Inducing Modular Rules for Classification -- Measuring the Performance of a Classifier -- Association Rule Mining I -- Association Rule Mining II -- Clustering -- Text Mining.
520 _aData Mining, the automatic extraction of implicit and potentially useful information from data, is increasingly used in commercial, scientific and other application areas. This book explains and explores the principal techniques of Data Mining: for classification, generation of association rules and clustering. It is written for readers without a strong background in mathematics or statistics and focuses on detailed examples & explanations of the algorithms given. It can be used as a textbook to support courses at undergraduate or postgraduate levels in a wide range of subjects including Computer Science, Business Studies, Marketing, Artificial Intelligence, Bioinformatics and Forensic Science. As an aid to self study, this book aims to help the general reader develop the necessary understanding to use commercial data mining packages discriminatingly, as well as enabling the advanced reader or academic researcher to understand or contribute to future technical advances in the field. Each chapter has practical exercises to enable readers to check their progress. A full glossary of technical terms used is included.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9781846287657
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-1-84628-766-4
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c291425
_d291425