000 03063nam a22003735i 4500
001 291432
003 MX-SnUAN
005 20160429154856.0
007 cr nn 008mamaa
008 150903s2008 xxk| o |||| 0|eng d
020 _a9781848000544
_99781848000544
024 7 _a10.1007/9781848000544
_2doi
035 _avtls000344140
039 9 _a201509030407
_bVLOAD
_c201405050303
_dVLOAD
_y201402061249
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQA564-609
100 1 _aSabbah, Claude.
_eautor
_9322720
245 1 0 _aIsomonodromic Deformations and Frobenius Manifolds :
_bAn Introduction /
_cby Claude Sabbah.
264 1 _aLondon :
_bSpringer London,
_c2008.
300 _brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aUniversitext
500 _aSpringer eBooks
505 0 _aThe language of fibre bundles -- Holomorphic vector bundles on the Riemann sphere -- The Riemann-Hilbert correspondence on a Riemann surface -- Lattices -- The Riemann-Hilbert problem and Birkhoff’s problem -- Fourier-Laplace duality -- Integrable deformations of bundles with connection on the Riemann sphere -- Saito structures and Frobenius structures on a complex analytic manifold.
520 _aThe notion of a Frobenius structure on a complex analytic manifold appeared at the end of the seventies in the theory of singularities of holomorphic functions. Motivated by physical considerations, further development of the theory has opened new perspectives on, and revealed new links between, many apparently unrelated areas of mathematics and physics. Based on a series of graduate lectures, this book provides an introduction to algebraic geometric methods in the theory of complex linear differential equations. Starting from basic notions in complex algebraic geometry, it develops some of the classical problems of linear differential equations and ends with applications to recent research questions related to mirror symmetry. The fundamental tool used within the book is that of a vector bundle with connection. There is a detailed analysis of the singularities of such objects and of their deformations, and coverage of the techniques used in the resolution of the Riemann-Hilbert problem and Birkhoff’s problem. An approach to Frobenius manifolds using isomonodromic deformations of linear differential equations is also developed. Aimed at graduate students and researchers, the book assumes some familiarity with basic complex algebraic geometry.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9781848000537
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-1-84800-054-4
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c291432
_d291432