000 03486nam a22003735i 4500
001 291455
003 MX-SnUAN
005 20160429154857.0
007 cr nn 008mamaa
008 150903s2006 xxk| o |||| 0|eng d
020 _a9781846282003
_99781846282003
024 7 _a10.1007/1846282004
_2doi
035 _avtls000343726
039 9 _a201509030750
_bVLOAD
_c201404120954
_dVLOAD
_c201404090732
_dVLOAD
_y201402061203
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aTA177.4-185
100 1 _aAllen, Theodore T.
_eautor
_9306060
245 1 0 _aIntroduction to Engineering Statistics and Six Sigma :
_bStatistical Quality Control and Design of Experiments and Systems /
_cby Theodore T. Allen.
250 _a2.
264 1 _aLondon :
_bSpringer London,
_c2006.
300 _axxii, 529 páginas 114 ilustraciones
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
500 _aSpringer eBooks
505 0 _aStatistical Quality Control -- Quality Control and Six Sigma -- Define Phase and Strategy -- Measure Phase and Statistical Charting -- Analyze Phase -- Improve or Design Phase -- Control or Verify Phase -- Advanced SQC Methods -- SQC Case Studies -- SQC Theory -- Design of Experiments (DOE) and Regression -- DOE: The Jewel of Quality Engineering -- DOE: Screening Using Fractional Factorials -- DOE: Response Surface Methods -- DOE: Robust Design -- Regression -- Advanced Regression and Alternatives -- DOE and Regression Case Studies -- DOE and Regression Theory -- Optimization and Strategy -- Optimization and Strategy -- Tolerance Design -- Six Sigma Project Design.
520 _aMany have heard that six sigma methods are necessary to survive, let alone thrive, in today’s competitive markets, but are not really sure what the methods are or how or when to use them. Introduction to Engineering Statistics and Six Sigma contains precise descriptions of all of the many related methods and details case studies showing how they have been applied in engineering and business to achieve millions of dollars of savings. Specifically, the methods introduced include many kinds of design of experiments (DOE) and statistical process control (SPC) charting approaches, failure mode and effects analysis (FMEA), formal optimization, genetic algorithms, gauge reproducibility and repeatability (R&R), linear regression, neural nets, simulation, quality function deployment (QFD) and Taguchi methods. A major goal of the book is to help the reader to determine exactly which methods to apply in which situation and to predict how and when the methods might not be effective. Illustrative examples are provided for all the methods presented and exercises based on case studies help the reader build associations between techniques and industrial problems. A glossary of acronyms provides familiarity with six sigma terminology and solutions to homework and practice exams are included.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9781852339555
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/1-84628-200-4
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c291455
_d291455