000 04498nam a22003855i 4500
001 291519
003 MX-SnUAN
005 20160429154901.0
007 cr nn 008mamaa
008 150903s2007 xxk| o |||| 0|eng d
020 _a9781846288593
_99781846288593
024 7 _a10.1007/9781846288593
_2doi
035 _avtls000344051
039 9 _a201509030402
_bVLOAD
_c201405050301
_dVLOAD
_y201402061246
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
100 1 _aAhn, Hyo-Sung.
_eautor
_9322852
245 1 0 _aIterative Learning Control :
_bRobustness and Monotonic Convergence for Interval Systems /
_cby Hyo-Sung Ahn, YangQuan Chen, Kevin L. Moore.
264 1 _aLondon :
_bSpringer London,
_c2007.
300 _axviii, 230 páginas
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aCommunications and Control Engineering,
_x0178-5354
500 _aSpringer eBooks
505 0 _aIterative Learning Control Overview -- An Overview of the ILC Literature -- The Super-vector Approach -- Robust Interval Iterative Learning Control -- Robust Interval Iterative Learning Control: Analysis -- Schur Stability Radius of Interval Iterative Learning Control -- Iterative Learning Control Design Based on Interval Model Conversion -- Iteration-domain Robustness -- Robust Iterative Learning Control: H? Approach -- Robust Iterative Learning Control: Stochastic Approaches -- Conclusions.
520 _aThis monograph studies the design of robust, monotonically-convergent iterative learning controllers for discrete-time systems. Two key problems with the fundamentals of iterative learning control (ILC) design as treated by existing work are: first, many ILC design strategies assume nominal knowledge of the system to be controlled and; second, it is well-known that many ILC algorithms do not produce monotonic convergence, though in applications monotonic convergence is often essential. Iterative Learning Control takes account of the recently-developed comprehensive approach to robust ILC analysis and design established to handle the situation where the plant model is uncertain. Considering ILC in the iteration domain, it presents a unified analysis and design framework that enables designers to consider both robustness and monotonic convergence for typical uncertainty models, including parametric interval uncertainties, iteration-domain frequency uncertainty, and iteration-domain stochastic uncertainty. Topics include: • Use of a lifting technique to convert the two-dimensional ILC system, which has dynamics in both the time and iteration domains, into the supervector framework, which yields a one-dimensional system, with dynamics only in the iteration domain. • Development of iteration-domain uncertainty models in the supervector framework. • ILC design for monotonic convergence when the plant is subject to parametric interval uncertainty in its Markov matrix. • An algebraic H-infinity design methodology for ILC design when the plant is subject to iteration-domain frequency uncertainty. • Development of Kalman-filter-based ILC algorithms when the plant is subject to iteration-domain stochastic uncertainties. • Analytical determination of the base-line error of ILC algorithms. • Solutions to three fundamental robust interval computational problems (used as basic tools for designing robust ILC controllers): finding the maximum singular value of an interval matrix, determining the robust stability of interval polynomial matrix, and obtaining the power of an interval matrix. Iterative Learning Control will be of great interest to academic researchers in control theory and to industrial control engineers working in robotics-oriented manufacturing and batch-processing-based industries. Graduate students of intelligent control will also find this volume instructive.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
700 1 _aChen, YangQuan.
_eautor
_9316069
700 1 _aMoore, Kevin L.
_eautor
_9322853
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9781846288463
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-1-84628-859-3
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c291519
_d291519