000 03343nam a22003735i 4500
001 291541
003 MX-SnUAN
005 20170705134223.0
007 cr nn 008mamaa
008 150903s2005 xxk| o |||| 0|eng d
020 _a9781846281501
_99781846281501
024 7 _a10.1007/1846281504
_2doi
035 _avtls000343693
039 9 _a201509030252
_bVLOAD
_c201404120949
_dVLOAD
_c201404090727
_dVLOAD
_y201402061202
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQA273.A1-274.9
100 1 _aMolchanov, Ilya.
_eautor
_9322900
245 1 0 _aTheory of Random Sets /
_cby Ilya Molchanov.
264 1 _aLondon :
_bSpringer London,
_c2005.
300 _axvI, 488 páginas 33 ilustraciones
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aProbability and Its Applications,
_x1431-7028
500 _aSpringer eBooks
505 0 _aRandom Closed Sets and Capacity Functionals -- Expectations of Random Sets -- Minkowski Addition -- Unions of Random Sets -- Random Sets and Random Functions. Appendices: Topological Spaces -- Linear Spaces -- Space of Closed Sets -- Compact Sets and the Hausdorff Metric -- Multifunctions and Continuity -- Measures and Probabilities -- Capacities -- Convex Sets -- Semigroups and Harmonic Analysis -- Regular Variation. References -- List of Notation -- Name Index -- Subject Index.
520 _aStochastic geometry is a relatively new branch of mathematics. Although its predecessors such as geometric probability date back to the 18th century, the formal concept of a random set was developed in the beginning of the 1970s. Theory of Random Sets presents a state of the art treatment of the modern theory, but it does not neglect to recall and build on the foundations laid by Matheron and others, including the vast advances in stochastic geometry, probability theory, set-valued analysis, and statistical inference of the 1990s. The book is entirely self-contained, systematic and exhaustive, with the full proofs that are necessary to gain insight. It shows the various interdisciplinary relationships of random set theory within other parts of mathematics, and at the same time, fixes terminology and notation that are often varying in the current literature to establish it as a natural part of modern probability theory, and to provide a platform for future development. An extensive, searchable bibliography to accompany the book is freely available via the web. The book will be an invaluable reference for probabilists, mathematicians in convex and integral geometry, set-valued analysis, capacity and potential theory, mathematical statisticians in spatial statistics and image analysis, specialists in mathematical economics, and electronic and electrical engineers interested in image analysis.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9781852338923
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/1-84628-150-4
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c291541
_d291541