000 03508nam a22003615i 4500
001 291630
003 MX-SnUAN
005 20160429154908.0
007 cr nn 008mamaa
008 150903s2005 xxk| o |||| 0|eng d
020 _a9781846281587
_99781846281587
024 7 _a10.1007/184628158-X
_2doi
035 _avtls000343700
039 9 _a201509030748
_bVLOAD
_c201404120950
_dVLOAD
_c201404090728
_dVLOAD
_y201402061202
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
100 1 _aKatayama, Tohru.
_eautor
_9323019
245 1 0 _aSubspace Methods for System Identification /
_cby Tohru Katayama.
264 1 _aLondon :
_bSpringer London,
_c2005.
300 _axvI, 392 páginas 66 ilustraciones
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aCommunications and Control Engineering,
_x0178-5354
500 _aSpringer eBooks
505 0 _aPreliminaries -- Linear Algebra and Preliminaries -- Discrete-Time Linear Systems -- Stochastic Processes -- Kalman Filter -- Realization Theory -- Realization of Deterministic Systems -- Stochastic Realization Theory (1) -- Stochastic Realization Theory (2) -- Subspace Identification -- Subspace Identification (1) — ORT -- Subspace Identification (2) — CCA -- Identification of Closed-loop System.
520 _aSystem identification provides methods for the sensible approximation of real systems using a model set based on experimental input and output data. Tohru Katayama sets out an in-depth introduction to subspace methods for system identification in discrete-time linear systems thoroughly augmented with advanced and novel results. The text is structured into three parts. First, the mathematical preliminaries are dealt with: numerical linear algebra; system theory; stochastic processes; and Kalman filtering. The second part explains realization theory, particularly that based on the decomposition of Hankel matrices, as it is applied to subspace identification methods. Two stochastic realization results are included, one based on spectral factorization and Riccati equations, the other on canonical correlation analysis (CCA) for stationary processes. Part III uses the development of stochastic realization results, in the presence of exogenous inputs, to demonstrate the closed-loop application of subspace identification methods CCA and ORT (based on orthogonal decomposition). The addition of tutorial problems with solutions and Matlab® programs which demonstrate various aspects of the methods propounded to introductory and research material makes Subspace Methods for System Identification not only an excellent reference for researchers but also a very useful text for tutors and graduate students involved with courses in control and signal processing. The book can be used for self-study and will be of much interest to the applied scientist or engineer wishing to use advanced methods in modeling and identification of complex systems.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9781852339814
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/1-84628-158-X
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c291630
_d291630