000 03119nam a22003615i 4500
001 291707
003 MX-SnUAN
005 20160429154914.0
007 cr nn 008mamaa
008 150903s2008 xxk| o |||| 0|eng d
020 _a9781846289972
_99781846289972
024 7 _a10.1007/9781846289972
_2doi
035 _avtls000344114
039 9 _a201509030406
_bVLOAD
_c201405050302
_dVLOAD
_y201402061248
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aT385
100 1 _aVince, John.
_eautor
_9306214
245 1 0 _aGeometric Algebra for Computer Graphics /
_cby John Vince.
264 1 _aLondon :
_bSpringer London,
_c2008.
300 _brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
500 _aSpringer eBooks
505 0 _aElementary Algebra -- Complex Algebra -- Vector Algebra -- Quaternion Algebra -- Geometric Conventions -- Geometric Algebra -- The Geometric Product -- Reflections and Rotations -- Geometric Algebra and Geometry -- Conformal Geometry -- Applications of Geometric Algebra -- Programming Tools for Geometric Algebra -- Conclusion.
520 _aSince its invention, geometric algebra has been applied to various branches of physics such as cosmology and electrodynamics, and is now being embraced by the computer graphics community where it is providing new ways of solving geometric problems. It took over two thousand years to discover this algebra, which uses a simple and consistent notation to describe vectors and their products. John Vince (best-selling author of a number of books including ‘Geometry for Computer Graphics’ and ‘Vector Analysis for Computer Graphics’) tackles this new subject in his usual inimitable style, and provides an accessible and very readable introduction. The first five chapters review the algebras of real numbers, complex numbers, vectors, and quaternions and their associated axioms, together with the geometric conventions employed in analytical geometry. As well as putting geometric algebra into its historical context, John Vince provides chapters on Grassmann’s outer product and Clifford’s geometric product, followed by the application of geometric algebra to reflections, rotations, lines, planes and their intersection. The conformal model is also covered, where a 5D Minkowski space provides an unusual platform for unifying the transforms associated with 3D Euclidean space. Filled with lots of clear examples and useful illustrations, this compact book provides an excellent introduction to geometric algebra for computer graphics.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9781846289965
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-1-84628-997-2
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c291707
_d291707