000 02966nam a22003735i 4500
001 291723
003 MX-SnUAN
005 20160429154915.0
007 cr nn 008mamaa
008 150903s2005 xxk| o |||| 0|eng d
020 _a9781846281181
_99781846281181
024 7 _a10.1007/b138856
_2doi
035 _avtls000343662
039 9 _a201509031102
_bVLOAD
_c201405070515
_dVLOAD
_y201402061201
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQA276-280
100 1 _aFyfe, Colin.
_eautor
_9323148
245 1 0 _aHebbian Learning and Negative Feedback Networks /
_cby Colin Fyfe.
264 1 _aLondon :
_bSpringer London,
_c2005.
300 _axviii, 383 páginas 117 ilustraciones
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aAdvanced Information and Knowledge Processing
500 _aSpringer eBooks
505 0 _aSingle Stream Networks -- Background -- The Negative Feedback Network -- Peer-Inhibitory Neurons -- Multiple Cause Data -- Exploratory Data Analysis -- Topology Preserving Maps -- Maximum Likelihood Hebbian Learning -- Dual Stream Networks -- Two Neural Networks for Canonical Correlation Analysis -- Alternative Derivations of CCA Networks -- Kernel and Nonlinear Correlations -- Exploratory Correlation Analysis -- Multicollinearity and Partial Least Squares -- Twinned Principal Curves -- The Future.
520 _aThe central idea of Hebbian Learning and Negative Feedback Networks is that artificial neural networks using negative feedback of activation can use simple Hebbian learning to self-organise so that they uncover interesting structures in data sets. Two variants are considered: the first uses a single stream of data to self-organise. By changing the learning rules for the network, it is shown how to perform Principal Component Analysis, Exploratory Projection Pursuit, Independent Component Analysis, Factor Analysis and a variety of topology preserving mappings for such data sets. The second variants use two input data streams on which they self-organise. In their basic form, these networks are shown to perform Canonical Correlation Analysis, the statistical technique which finds those filters onto which projections of the two data streams have greatest correlation. The book encompasses a wide range of real experiments and displays how the approaches it formulates can be applied to the analysis of real problems.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9781852338831
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/b138856
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c291723
_d291723