000 03372nam a22003975i 4500
001 291724
003 MX-SnUAN
005 20160429154915.0
007 cr nn 008mamaa
008 150903s2005 xxk| o |||| 0|eng d
020 _a9781846281198
_99781846281198
024 7 _a10.1007/b138794
_2doi
035 _avtls000343663
039 9 _a201509031102
_bVLOAD
_c201405070514
_dVLOAD
_y201402061201
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQA276-280
100 1 _aHusmeier, Dirk.
_eeditor.
_9323149
245 1 0 _aProbabilistic Modeling in Bioinformatics and Medical Informatics /
_cedited by Dirk Husmeier, Richard Dybowski, Stephen Roberts.
264 1 _aLondon :
_bSpringer London,
_c2005.
300 _axx, 504 páginas 218 ilustraciones
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aAdvanced Information and Knowledge Processing
500 _aSpringer eBooks
505 0 _aProbabilistic Modeling -- A Leisurely Look at Statistical Inference -- to Learning Bayesian Networks from Data -- A Casual View of Multi-Layer Perceptrons as Probability Models -- Bioinformatics -- to Statistical Phylogenetics -- Detecting Recombination in DNA Sequence Alignments -- RNA-Based Phylogenetic Methods -- Statistical Methods in Microarray Gene Expression Data Analysis -- Inferring Genetic Regulatory Networks from Microarray Experiments with Bayesian Networks -- Modeling Genetic Regulatory Networks using Gene Expression Profiling and State-Space Models -- Medical Informatics -- An Anthology of Probabilistic Models for Medical Informatics -- Bayesian Analysis of Population Pharmacokinetic/Pharmacodynamic Models -- Assessing the Effectiveness of Bayesian Feature Selection -- Bayes Consistent Classification of EEG Data by Approximate Marginalization -- Ensemble Hidden Markov Models with Extended Observation Densities for Biosignal Analysis -- A Probabilistic Network for Fusion of Data and Knowledge in Clinical Microbiology -- Software for Probability Models in Medical Informatics.
520 _aProbabilistic Modelling in Bioinformatics and Medical Informatics has been written for researchers and students in statistics, machine learning, and the biological sciences. The first part of this book provides a self-contained introduction to the methodology of Bayesian networks. The following parts demonstrate how these methods are applied in bioinformatics and medical informatics. All three fields - the methodology of probabilistic modeling, bioinformatics, and medical informatics - are evolving very quickly. The text should therefore be seen as an introduction, offering both elementary tutorials as well as more advanced applications and case studies.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
700 1 _aDybowski, Richard.
_eeditor.
_9323150
700 1 _aRoberts, Stephen.
_eeditor.
_9323151
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9781852337780
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/b138794
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c291724
_d291724