000 | 03769nam a22004095i 4500 | ||
---|---|---|---|
001 | 291739 | ||
003 | MX-SnUAN | ||
005 | 20170705134224.0 | ||
007 | cr nn 008mamaa | ||
008 | 150903s2008 xxk| o |||| 0|eng d | ||
020 |
_a9781846287978 _99781846287978 |
||
024 | 7 |
_a10.1007/9781846287978 _2doi |
|
035 | _avtls000344021 | ||
039 | 9 |
_a201509030357 _bVLOAD _c201405050301 _dVLOAD _y201402061246 _zstaff |
|
040 |
_aMX-SnUAN _bspa _cMX-SnUAN _erda |
||
050 | 4 | _aQA273.A1-274.9 | |
100 | 1 |
_aBiagini, Francesca. _eautor _9315569 |
|
245 | 1 | 0 |
_aStochastic Calculus for Fractional Brownian Motion and Applications / _cby Francesca Biagini, Yaozhong Hu, Bernt Øksendal, Tusheng Zhang. |
264 | 1 |
_aLondon : _bSpringer London, _c2008. |
|
300 | _brecurso en línea. | ||
336 |
_atexto _btxt _2rdacontent |
||
337 |
_acomputadora _bc _2rdamedia |
||
338 |
_arecurso en línea _bcr _2rdacarrier |
||
347 |
_aarchivo de texto _bPDF _2rda |
||
490 | 0 |
_aProbability and Its Applications, _x1431-7028 |
|
500 | _aSpringer eBooks | ||
505 | 0 | _aFractional Brownian motion -- Intrinsic properties of the fractional Brownian motion -- Stochastic calculus -- Wiener and divergence-type integrals for fractional Brownian motion -- Fractional Wick Itô Skorohod (fWIS) integrals for fBm of Hurst index H >1/2 -- WickItô Skorohod (WIS) integrals for fractional Brownian motion -- Pathwise integrals for fractional Brownian motion -- A useful summary -- Applications of stochastic calculus -- Fractional Brownian motion in finance -- Stochastic partial differential equations driven by fractional Brownian fields -- Stochastic optimal control and applications -- Local time for fractional Brownian motion. | |
520 | _aFractional Brownian motion (fBm) has been widely used to model a number of phenomena in diverse fields from biology to finance. This huge range of potential applications makes fBm an interesting object of study. fBm represents a natural one-parameter extension of classical Brownian motion therefore it is natural to ask if a stochastic calculus for fBm can be developed. This is not obvious, since fBm is neither a semimartingale (except when H = ½), nor a Markov process so the classical mathematical machineries for stochastic calculus are not available in the fBm case. Several approaches have been used to develop the concept of stochastic calculus for fBm. The purpose of this book is to present a comprehensive account of the different definitions of stochastic integration for fBm, and to give applications of the resulting theory. Particular emphasis is placed on studying the relations between the different approaches. Readers are assumed to be familiar with probability theory and stochastic analysis, although the mathematical techniques used in the book are thoroughly exposed and some of the necessary prerequisites, such as classical white noise theory and fractional calculus, are recalled in the appendices. This book will be a valuable reference for graduate students and researchers in mathematics, biology, meteorology, physics, engineering and finance. Aspects of the book will also be useful in other fields where fBm can be used as a model for applications. | ||
590 | _aPara consulta fuera de la UANL se requiere clave de acceso remoto. | ||
700 | 1 |
_aHu, Yaozhong. _eautor _9317288 |
|
700 | 1 |
_aØksendal, Bernt. _eautor _9305645 |
|
700 | 1 |
_aZhang, Tusheng. _eautor _9305647 |
|
710 | 2 |
_aSpringerLink (Servicio en línea) _9299170 |
|
776 | 0 | 8 |
_iEdición impresa: _z9781852339968 |
856 | 4 | 0 |
_uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-1-84628-797-8 _zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL) |
942 | _c14 | ||
999 |
_c291739 _d291739 |