000 03769nam a22004095i 4500
001 291739
003 MX-SnUAN
005 20170705134224.0
007 cr nn 008mamaa
008 150903s2008 xxk| o |||| 0|eng d
020 _a9781846287978
_99781846287978
024 7 _a10.1007/9781846287978
_2doi
035 _avtls000344021
039 9 _a201509030357
_bVLOAD
_c201405050301
_dVLOAD
_y201402061246
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQA273.A1-274.9
100 1 _aBiagini, Francesca.
_eautor
_9315569
245 1 0 _aStochastic Calculus for Fractional Brownian Motion and Applications /
_cby Francesca Biagini, Yaozhong Hu, Bernt Øksendal, Tusheng Zhang.
264 1 _aLondon :
_bSpringer London,
_c2008.
300 _brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aProbability and Its Applications,
_x1431-7028
500 _aSpringer eBooks
505 0 _aFractional Brownian motion -- Intrinsic properties of the fractional Brownian motion -- Stochastic calculus -- Wiener and divergence-type integrals for fractional Brownian motion -- Fractional Wick Itô Skorohod (fWIS) integrals for fBm of Hurst index H >1/2 -- WickItô Skorohod (WIS) integrals for fractional Brownian motion -- Pathwise integrals for fractional Brownian motion -- A useful summary -- Applications of stochastic calculus -- Fractional Brownian motion in finance -- Stochastic partial differential equations driven by fractional Brownian fields -- Stochastic optimal control and applications -- Local time for fractional Brownian motion.
520 _aFractional Brownian motion (fBm) has been widely used to model a number of phenomena in diverse fields from biology to finance. This huge range of potential applications makes fBm an interesting object of study. fBm represents a natural one-parameter extension of classical Brownian motion therefore it is natural to ask if a stochastic calculus for fBm can be developed. This is not obvious, since fBm is neither a semimartingale (except when H = ½), nor a Markov process so the classical mathematical machineries for stochastic calculus are not available in the fBm case. Several approaches have been used to develop the concept of stochastic calculus for fBm. The purpose of this book is to present a comprehensive account of the different definitions of stochastic integration for fBm, and to give applications of the resulting theory. Particular emphasis is placed on studying the relations between the different approaches. Readers are assumed to be familiar with probability theory and stochastic analysis, although the mathematical techniques used in the book are thoroughly exposed and some of the necessary prerequisites, such as classical white noise theory and fractional calculus, are recalled in the appendices. This book will be a valuable reference for graduate students and researchers in mathematics, biology, meteorology, physics, engineering and finance. Aspects of the book will also be useful in other fields where fBm can be used as a model for applications.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
700 1 _aHu, Yaozhong.
_eautor
_9317288
700 1 _aØksendal, Bernt.
_eautor
_9305645
700 1 _aZhang, Tusheng.
_eautor
_9305647
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9781852339968
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-1-84628-797-8
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c291739
_d291739