000 | 03839nam a22003975i 4500 | ||
---|---|---|---|
001 | 291757 | ||
003 | MX-SnUAN | ||
005 | 20170705134224.0 | ||
007 | cr nn 008mamaa | ||
008 | 150903s2005 xxk| o |||| 0|eng d | ||
020 |
_a9781846281211 _99781846281211 |
||
024 | 7 |
_a10.1007/b138890 _2doi |
|
035 | _avtls000343665 | ||
039 | 9 |
_a201509031103 _bVLOAD _c201405070515 _dVLOAD _y201402061201 _zstaff |
|
040 |
_aMX-SnUAN _bspa _cMX-SnUAN _erda |
||
050 | 4 | _aTK5102.9 | |
100 | 1 |
_aZaknich, Anthony. _eautor _9323197 |
|
245 | 1 | 0 |
_aPrinciples of Adaptive Filters and Self-learning Systems / _cby Anthony Zaknich ; edited by Michael J. Grimble, Michael A. Johnson. |
264 | 1 |
_aLondon : _bSpringer London, _c2005. |
|
300 |
_axxii, 386 páginas 95 ilustraciones _brecurso en línea. |
||
336 |
_atexto _btxt _2rdacontent |
||
337 |
_acomputadora _bc _2rdamedia |
||
338 |
_arecurso en línea _bcr _2rdacarrier |
||
347 |
_aarchivo de texto _bPDF _2rda |
||
490 | 0 |
_aAdvanced Textbooks in Control and Signal Processing, _x1439-2232 |
|
500 | _aSpringer eBooks | ||
505 | 0 | _aAdaptive Filtering -- Linear Systems and Stochastic Processes -- Modelling -- Optimisation and Least Squares Estimation -- Parametric Signal and System Modelling -- Classical Filters and Spectral Analysis -- Optimum Wiener Filter -- Optimum Kalman Filter -- Power Spectral Density Analysis -- Adaptive Filter Theory -- Adaptive Finite Impulse Response Filters -- Frequency Domain Adaptive Filters -- Adaptive Volterra Filters -- Adaptive Control Systems -- Nonclassical Adaptive Systems -- to Neural Networks -- to Fuzzy Logic Systems -- to Genetic Algorithms -- Adaptive Filter Application -- Applications of Adaptive Signal Processing -- Generic Adaptive Filter Structures. | |
520 | _aKalman and Wiener Filters, Neural Networks, Genetic Algorithms and Fuzzy Logic Systems Together in One Text Book How can a signal be processed for which there are few or no a priori data? Professor Zaknich provides an ideal textbook for one-semester introductory graduate or senior undergraduate courses in adaptive and self-learning systems for signal processing applications. Important topics are introduced and discussed sufficiently to give the reader adequate background for confident further investigation. The material is presented in a progression from a short introduction to adaptive systems through modelling, classical filters and spectral analysis to adaptive control theory, nonclassical adaptive systems and applications. Features: • Comprehensive review of linear and stochastic theory. • Design guide for practical application of the least squares estimation method and Kalman filters. • Study of classical adaptive systems together with neural networks, genetic algorithms and fuzzy logic systems and their combination to deal with such complex problems as underwater acoustic signal processing. • Tutorial problems and exercises which identify the significant points and demonstrate the practical relevance of the theory. • PDF Solutions Manual, available to tutors from springeronline.com, containing not just answers to the tutorial problems but also course outlines, sample examination material and project assignments to help in developing a teaching programme and to give ideas for practical investigations. | ||
590 | _aPara consulta fuera de la UANL se requiere clave de acceso remoto. | ||
700 | 1 |
_aGrimble, Michael J. _eeditor. _9323198 |
|
700 | 1 |
_aJohnson, Michael A. _eeditor. _9322837 |
|
710 | 2 |
_aSpringerLink (Servicio en línea) _9299170 |
|
776 | 0 | 8 |
_iEdición impresa: _z9781852339845 |
856 | 4 | 0 |
_uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/b138890 _zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL) |
942 | _c14 | ||
999 |
_c291757 _d291757 |