000 03057nam a22003855i 4500
001 291759
003 MX-SnUAN
005 20160429154917.0
007 cr nn 008mamaa
008 150903s2005 xxk| o |||| 0|eng d
020 _a9781846282201
_99781846282201
024 7 _a10.1007/1846282209
_2doi
035 _avtls000343744
039 9 _a201509030750
_bVLOAD
_c201404120957
_dVLOAD
_c201404090735
_dVLOAD
_y201402061203
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQA440-699
100 1 _aAnderson, James W.
_eautor
_9323203
245 1 0 _aHyperbolic Geometry /
_cby James W. Anderson.
250 _aSecond Edition.
264 1 _aLondon :
_bSpringer London,
_c2005.
300 _axii, 276 páginas 21 ilustraciones
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aSpringer Undergraduate Mathematics Series,
_x1615-2085
500 _aSpringer eBooks
505 0 _aThe Basic Spaces -- The General Möbius Group -- Length and Distance in ? -- Planar Models of the Hyperbolic Plane -- Convexity, Area, and Trigonometry -- Nonplanar models.
520 _aThe geometry of the hyperbolic plane has been an active and fascinating field of mathematical inquiry for most of the past two centuries. This book provides a self-contained introduction to the subject, suitable for third or fourth year undergraduates. The basic approach taken is to define hyperbolic lines and develop a natural group of transformations preserving hyperbolic lines, and then study hyperbolic geometry as those quantities invariant under this group of transformations. Topics covered include the upper half-plane model of the hyperbolic plane, Möbius transformations, the general Möbius group, and their subgroups preserving the upper half-plane, hyperbolic arc-length and distance as quantities invariant under these subgroups, the Poincaré disc model, convex subsets of the hyperbolic plane, hyperbolic area, the Gauss-Bonnet formula and its applications. This updated second edition also features: an expanded discussion of planar models of the hyperbolic plane arising from complex analysis; the hyperboloid model of the hyperbolic plane; brief discussion of generalizations to higher dimensions; many new exercises. The style and level of the book, which assumes few mathematical prerequisites, make it an ideal introduction to this subject and provides the reader with a firm grasp of the concepts and techniques of this beautiful part of the mathematical landscape.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9781852339340
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/1-84628-220-9
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c291759
_d291759