000 03571nam a22003855i 4500
001 291786
003 MX-SnUAN
005 20160429154918.0
007 cr nn 008mamaa
008 150903s2008 xxk| o |||| 0|eng d
020 _a9781848000056
_99781848000056
024 7 _a10.1007/9781848000056
_2doi
035 _avtls000344118
039 9 _a201509030407
_bVLOAD
_c201405050302
_dVLOAD
_y201402061248
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQA319-329.9
100 1 _aRynne, Bryan P.
_eautor
_9323230
245 1 0 _aLinear Functional Analysis /
_cby Bryan P. Rynne, Martin A. Youngson.
264 1 _aLondon :
_bSpringer London,
_c2008.
300 _brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aSpringer Undergraduate Mathematics Series,
_x1615-2085
500 _aSpringer eBooks
505 0 _aPreliminaries -- Normed Spaces -- Inner Product Spaces, Hilbert Spaces -- Linear Operators -- Duality and the Hahn—Banach Theorem -- Linear Operators on Hilbert Spaces -- Compact Operators -- Integral and Differential Equations -- Solutions to Exercises.
520 _aThis introduction to the ideas and methods of linear functional analysis shows how familiar and useful concepts from finite-dimensional linear algebra can be extended or generalized to infinite-dimensional spaces. Aimed at advanced undergraduates in mathematics and physics, the book assumes a standard background of linear algebra, real analysis (including the theory of metric spaces), and Lebesgue integration, although an introductory chapter summarizes the requisite material. The initial chapters develop the theory of infinite-dimensional normed spaces, in particular Hilbert spaces, after which the emphasis shifts to studying operators between such spaces. Functional analysis has applications to a vast range of areas of mathematics; the final chapters discuss the particularly important areas of integral and differential equations. Further highlights of the second edition include: a new chapter on the Hahn–Banach theorem and its applications to the theory of duality. This chapter also introduces the basic properties of projection operators on Banach spaces, and weak convergence of sequences in Banach spaces - topics that have applications to both linear and nonlinear functional analysis; extended coverage of the uniform boundedness theorem; plenty of exercises, with solutions provided at the back of the book. Praise for the first edition: "The authors write with a strong narrative thrust and a sensitive appreciation of the needs of the average student so that, by the final chapter, there is a real feeling of having 'gotten somewhere worth getting' by a sensibly paced, clearly signposted route." Mathematical Gazette "It is a fine book, with material well-organized and well-presented. A particularly useful feature is the material on compact operators and applications to differential equations." CHOICE
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
700 1 _aYoungson, Martin A.
_eautor
_9323231
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9781848000049
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-1-84800-005-6
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c291786
_d291786