000 03573nam a22003735i 4500
001 291827
003 MX-SnUAN
005 20170705134224.0
007 cr nn 008mamaa
008 150903s2008 xxk| o |||| 0|eng d
020 _a9781846289132
_99781846289132
024 7 _a10.1007/9781846289132
_2doi
035 _avtls000344077
039 9 _a201509030406
_bVLOAD
_c201405050302
_dVLOAD
_y201402061247
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aTA1637-1638
100 1 _aArmstrong, Brian S.R.
_eautor
_9323285
245 1 0 _aPrecision Landmark Location for Machine Vision and Photogrammetry :
_bFinding and Achieving the Maximum Possible Accuracy /
_cby Brian S.R. Armstrong, José A. Gutierrez.
264 1 _aLondon :
_bSpringer London,
_c2008.
300 _brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
500 _aSpringer eBooks
505 0 _aPhysics of Digital Image Formation -- Analytic Framework for Landmark Location Uncertainty -- Model-based Landmark Location Estimators -- Two-dimensional Noncollocated Numerical Integration -- Computational Tools -- Experimental Validation -- Studies of Landmark Location Uncertainty -- Conclusions.
520 _aThe applications of image-based measurement are many and various: image-guided surgery, mobile-robot navigation, component alignment, part inspection and photogrammetry, among others. In all these applications, landmarks are detected and located in images, and measurements made from those locations. Precision Landmark Location for Machine Vision and Photogrammetry addresses the ubiquitous problem of measurement error associated with determining the location of landmarks in images. With a detailed model of the image formation process and landmark location estimation, the Cramér–Rao Lower Bound (CRLB) theory of statistics is applied to determine the least possible measurement uncertainty in a given situation. This monograph provides the reader with: • the most complete treatment to date of precision landmark location and the engineering aspects of image capture and processing; • detailed theoretical treatment of the CRLB; • a software tool for analyzing the potential performance-specific camera/lens/algorithm configurations; • two novel algorithms which achieve precision very close to the CRLB; • an experimental method for determining the accuracy of landmark location; • downloadable MATLAB® package to assist the reader with applying theoretically-derived results to practical engineering configurations. All of this adds up to a treatment that is at once theoretically sound and eminently practical. Precision Landmark Location for Machine Vision and Photogrammetry will be of great interest to computer scientists and engineers working with and/or studying image processing and measurement. It includes cutting-edge theoretical developments and practical tools so it will appeal to research investigators and system designers.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
700 1 _aGutierrez, José A.
_eautor
_9323286
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9781846289125
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-1-84628-913-2
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c291827
_d291827