000 03836nam a22003615i 4500
001 291832
003 MX-SnUAN
005 20160429154921.0
007 cr nn 008mamaa
008 150903s2008 xxk| o |||| 0|eng d
020 _a9781848001152
_99781848001152
024 7 _a10.1007/9781848001152
_2doi
035 _avtls000344169
039 9 _a201509030353
_bVLOAD
_c201405050303
_dVLOAD
_y201402061250
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQA76.9.M35
100 1 _aGhali, Sherif.
_eautor
_9323290
245 1 0 _aIntroduction to Geometric Computing /
_cby Sherif Ghali.
264 1 _aLondon :
_bSpringer London,
_c2008.
300 _axviii, 342 páginas 287 ilustraciones
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
500 _aSpringer eBooks
505 0 _aEuclidean Geometry -- 2D Computational Euclidean Geometry -- Geometric Predicates -- 3D Computational Euclidean Geometry -- Affine Transformations -- Affine Intersections -- Genericity in Geometric Computing -- Numerical Precision -- Non-Euclidean Geometries -- 1D Computational Spherical Geometry -- 2D Computational Spherical Geometry -- Rotations and Quaternions -- Projective Geometry -- Homogeneous Coordinates for Projective Geometry -- Barycentric Coordinates -- Oriented Projective Geometry -- Oriented Projective Intersections -- Coordinate-Free Geometry -- Homogeneous Coordinates for Euclidean Geometry -- Coordinate-Free Geometric Computing -- to CGAL -- Raster Graphics -- Segment Scan Conversion -- Polygon-Point Containment -- Illumination and Shading -- Raster-Based Visibility -- Ray Tracing -- Tree and Graph Drawing -- Tree Drawing -- Graph Drawing -- Geometric and Solid Modeling -- Boundary Representations -- The Halfedge Data Structure and Euler Operators -- BSP Trees in Euclidean and Spherical Geometries -- Geometry-Free Geometric Computing -- Constructive Solid Geometry -- Vector Visibility -- Visibility from Euclidean to Spherical Spaces -- Visibility in Space.
520 _aThe geometric ideas in computer science, mathematics, engineering, and physics have considerable overlap and students in each of these disciplines will eventually encounter geometric computing problems. The topic is traditionally taught in mathematics departments via geometry courses, and in computer science through computer graphics modules. This text isolates the fundamental topics affecting these disciplines and lies at the intersection of classical geometry and modern computing. The main theme of the book is the definition of coordinate-free geometric software layers for Euclidean, spherical, projective, and oriented-projective geometries. Results are derived from elementary linear algebra and many classical computer graphics problems (including the graphics pipeline) are recast in this new language. Also included is a novel treatment of classical geometric and solid modeling problems. The definition of geometric software layers promotes reuse, speeds up debugging, and prepares the ground for a thorough discussion of advanced topics. Start-up programs are provided for many programming exercises making this an invaluable book for computer science lecturers as well as software developers and researchers in the computer graphics industry.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9781848001145
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-1-84800-115-2
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c291832
_d291832