000 02941nam a22003735i 4500
001 291888
003 MX-SnUAN
005 20160429154924.0
007 cr nn 008mamaa
008 150903s2006 xxk| o |||| 0|eng d
020 _a9781846281815
_99781846281815
024 7 _a10.1007/9781846281815
_2doi
035 _avtls000343713
039 9 _a201509030355
_bVLOAD
_c201405050258
_dVLOAD
_y201402061203
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQA150-272
100 1 _aHowie, John M.
_eautor
_9323364
245 1 0 _aFields and Galois Theory /
_cby John M. Howie.
264 1 _aLondon :
_bSpringer London,
_c2006.
300 _ax, 225 páginas 22 ilustraciones
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aSpringer Undergraduate Mathematics Series,
_x1615-2085
500 _aSpringer eBooks
505 0 _aRings and Fields -- Integral Domains and Polynomials -- Field Extensions -- Applications to Geometry -- Splitting Fields -- Finite Fields -- The Galois Group -- Equations and Groups -- Some Group Theory -- Groups and Equations -- Regular Polygons -- Solutions.
520 _aThe pioneering work of Abel and Galois in the early nineteenth century demonstrated that the long-standing quest for a solution of quintic equations by radicals was fruitless: no formula can be found. The techniques they used were, in the end, more important than the resolution of a somewhat esoteric problem, for they were the genesis of modern abstract algebra. This book provides a gentle introduction to Galois theory suitable for third- and fourth-year undergraduates and beginning graduates. The approach is unashamedly unhistorical: it uses the language and techniques of abstract algebra to express complex arguments in contemporary terms. Thus the insolubility of the quintic by radicals is linked to the fact that the alternating group of degree 5 is simple - which is assuredly not the way Galois would have expressed the connection. Topics covered include: rings and fields integral domains and polynomials field extensions and splitting fields applications to geometry finite fields the Galois group equations Group theory features in many of the arguments, and is fully explained in the text. Clear and careful explanations are backed up with worked examples and more than 100 exercises, for which full solutions are provided.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9781852339869
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-1-84628-181-5
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c291888
_d291888