000 03364nam a22003735i 4500
001 291894
003 MX-SnUAN
005 20160429154924.0
007 cr nn 008mamaa
008 150903s2006 xxk| o |||| 0|eng d
020 _a9781846283031
_99781846283031
024 7 _a10.1007/1846283035
_2doi
035 _avtls000343795
039 9 _a201509030750
_bVLOAD
_c201404121005
_dVLOAD
_c201404090743
_dVLOAD
_y201402061205
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQ342
100 1 _aDu, K. -L.
_eautor
_9323377
245 1 0 _aNeural Networks in a Softcomputing Framework /
_cby K. -L. Du, M. N. S. Swamy.
264 1 _aLondon :
_bSpringer London,
_c2006.
300 _aL, 566 páginas 116 ilustraciones
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
500 _aSpringer eBooks
505 0 _aFundamentals of Machine Learning and Softcomputing -- Multilayer Perceptrons -- Hopfield Networks and Boltzmann Machines -- Competitive Learning and Clustering -- Radial Basis Function Networks -- Principal Component Analysis Networks -- Fuzzy Logic and Neurofuzzy Systems -- Evolutionary Algorithms and Evolving Neural Networks -- Discussion and Outlook.
520 _aConventional model-based data processing methods are computationally expensive and require experts’ knowledge for the modelling of a system; neural networks provide a model-free, adaptive, parallel-processing solution. Neural Networks in a Softcomputing Framework presents a thorough review of the most popular neural-network methods and their associated techniques. This concise but comprehensive textbook provides a powerful and universal paradigm for information processing. Each chapter provides state-of-the-art descriptions of the important major research results of the respective neural-network methods. A range of relevant computational intelligence topics, such as fuzzy logic and evolutionary algorithms, are introduced. These are powerful tools for neural-network learning. Array signal processing problems are discussed in order to illustrate the applications of each neural-network model. Neural Networks in a Softcomputing Framework is an ideal textbook for graduate students and researchers in this field because in addition to grasping the fundamentals, they can discover the most recent advances in each of the popular models. The systematic survey of each neural-network model and the exhaustive list of references will enable researchers and students to find suitable topics for future research. The important algorithms outlined also make this textbook a valuable reference for scientists and practitioners working in pattern recognition, signal processing, speech and image processing, data analysis and artificial intelligence.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
700 1 _aSwamy, M. N. S.
_eautor
_9315670
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9781846283024
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/1-84628-303-5
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c291894
_d291894