000 | 03629nam a22003855i 4500 | ||
---|---|---|---|
001 | 291934 | ||
003 | MX-SnUAN | ||
005 | 20160429154926.0 | ||
007 | cr nn 008mamaa | ||
008 | 150903s2005 xxk| o |||| 0|eng d | ||
020 |
_a9781846280870 _99781846280870 |
||
024 | 7 |
_a10.1007/b138626 _2doi |
|
035 | _avtls000343636 | ||
039 | 9 |
_a201509030434 _bVLOAD _c201405070513 _dVLOAD _y201402061201 _zstaff |
|
040 |
_aMX-SnUAN _bspa _cMX-SnUAN _erda |
||
100 | 1 |
_aEspinosa, Jairo. _eautor _9323434 |
|
245 | 1 | 0 |
_aFuzzy Logic, Identification and Predictive Control / _cby Jairo Espinosa, Joos Vandewalle, Vincent Wertz. |
264 | 1 |
_aLondon : _bSpringer London, _c2005. |
|
300 |
_axIx, 263 páginas 138 ilustraciones _brecurso en línea. |
||
336 |
_atexto _btxt _2rdacontent |
||
337 |
_acomputadora _bc _2rdamedia |
||
338 |
_arecurso en línea _bcr _2rdacarrier |
||
347 |
_aarchivo de texto _bPDF _2rda |
||
490 | 0 |
_aAdvances in Industrial Control, _x1430-9491 |
|
500 | _aSpringer eBooks | ||
505 | 0 | _aFuzzy Modeling -- Fuzzy Modeling -- Constructing Fuzzy Models from Input-Output Data -- Fuzzy Modeling with Linguistic Integrity: A Tool for Data Mining -- Nonlinear Identification Using Fuzzy Models -- Fuzzy Control -- Fuzzy Control -- Predictive Control Based on Fuzzy Models -- Robust Nonlinear Predictive Control Using Fuzzy Models -- Conclusions and Future Perspectives. | |
520 | _aThe complexity and sensitivity of modern industrial processes and systems increasingly require adaptable advanced control protocols. These controllers have to be able to deal with circumstances demanding "judgement" rather than simple "yes/no", "on/off" responses, circumstances where an imprecise linguistic description is often more relevant than a cut-and-dried numerical one. The ability of fuzzy systems to handle numeric and linguistic information within a single framework renders them efficacious in this form of expert control system. Divided into two parts, Fuzzy Logic, Identification and Predictive Control first shows you how to construct static and dynamic fuzzy models using the numerical data from a variety of real-world industrial systems and simulations. The second part demonstrates the exploitation of such models to design control systems employing techniques like data mining. Fuzzy Logic, Identification and Predictive Control is a comprehensive introduction to the use of fuzzy methods in many different control paradigms encompassing robust, model-based, PID-like and predictive control. This combination of fuzzy control theory and industrial serviceability will make a telling contribution to your research whether in the academic or industrial sphere and also serves as a fine roundup of the fuzzy control area for the graduate student. Advances in Industrial Control aims to report and encourage the transfer of technology in control engineering. The rapid development of control technology has an impact on all areas of the control discipline. The series offers an opportunity for researchers to present an extended exposition of new work in all aspects of industrial control. | ||
590 | _aPara consulta fuera de la UANL se requiere clave de acceso remoto. | ||
700 | 1 |
_aVandewalle, Joos. _eautor _9323435 |
|
700 | 1 |
_aWertz, Vincent. _eautor _9323436 |
|
710 | 2 |
_aSpringerLink (Servicio en línea) _9299170 |
|
776 | 0 | 8 |
_iEdición impresa: _z9781852338282 |
856 | 4 | 0 |
_uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/b138626 _zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL) |
942 | _c14 | ||
999 |
_c291934 _d291934 |