000 03983nam a22003735i 4500
001 291993
003 MX-SnUAN
005 20160429154932.0
007 cr nn 008mamaa
008 150903s2007 xxk| o |||| 0|eng d
020 _a9781846288296
_99781846288296
024 7 _a10.1007/9781846288296
_2doi
035 _avtls000344037
039 9 _a201509030402
_bVLOAD
_c201405050301
_dVLOAD
_y201402061246
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
100 1 _aNormey-Rico, J. E.
_eautor
_9323513
245 1 0 _aControl of Dead-time Processes /
_cby J. E. Normey-Rico, E. F. Camacho.
264 1 _aLondon :
_bSpringer London,
_c2007.
300 _axxvI, 462 páginas 246 ilustraciones
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aAdvanced Textbooks in Control and Signal Processing,
_x1439-2232
500 _aSpringer eBooks
505 0 _aDead-time Processes -- Identification of Dead-time Processes -- PID Control of Dead-time Processes -- The Smith Predictor -- Dead-time Compensators for Stable Plants -- Dead-time Compensators for Unstable Plants -- Discrete Dead-time Compensators -- Model Predictive Control of Dead-time Processes -- Robust Predictive Control of Dead-time Processes -- Multivariable Dead-time Compensation -- Robust MPC for MIMO Dead-time Processes -- Control of Nonlinear Dead-time Processes -- Prediction for Control.
520 _aIndustrial processes and engineering, economic and biological systems commonly exhibit time delays or dead times. Dead time complicates the analysis and design of control systems and makes satisfactory control more difficult. Control of Dead-time Processes introduces the fundamental techniques for controlling dead-time processes ranging from simple monovariable to complex multivariable cases. Solutions to dead-time-process-control problems are studied using classical proportional-integral-differential (PID) control for the simpler examples and dead-time-compensator (DTC) and model predictive control (MPC) methods for progressively more complex ones. Although MPC and DTC approaches originate in different areas of control, both use predictors to overcome the effects of dead time. Using this fact, the text analyses MPC as a dead-time-compensation strategy and shows how it can be used synergistically with robust DTC tuning methodologies. Graduate students working for their masters or PhDs in automatic control, chemical, electronic or mechanical engineering, in which dead-time processes are prevalent, will gain particular benefit from the following features of this text: • interlinked study of PID, DTC and MPC for dead-time processes in a single source; • exercises and further reading for each chapter; • extensive use of illustrations, tables and examples; • case studies based on real industrial problems with solutions that are simple to understand and easy to implement; • MATLAB® code developed by the authors to help analyse and control dead-time processes including code for all the examples in the book available for download from www.das.ufsc.br/~julio/deadtimebook and www.esi2.us.es/~eduardo/deadtimebook. Control of Dead-time Processes will also be of interest to control researchers and process control engineers. Chapters 1-8 of the text can be used as part of the final-year course for undergraduates in control or process engineering.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
700 1 _aCamacho, E. F.
_eautor
_9305911
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9781846288289
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-1-84628-829-6
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c291993
_d291993