000 | 03503nam a22003735i 4500 | ||
---|---|---|---|
001 | 292043 | ||
003 | MX-SnUAN | ||
005 | 20170705134224.0 | ||
007 | cr nn 008mamaa | ||
008 | 150903s2008 xxk| o |||| 0|eng d | ||
020 |
_a9781848000483 _99781848000483 |
||
024 | 7 |
_a10.1007/9781848000483 _2doi |
|
035 | _avtls000344137 | ||
039 | 9 |
_a201509030407 _bVLOAD _c201405050303 _dVLOAD _y201402061249 _zstaff |
|
040 |
_aMX-SnUAN _bspa _cMX-SnUAN _erda |
||
050 | 4 | _aQA273.A1-274.9 | |
100 | 1 |
_aKlenke, Achim. _eautor _9315496 |
|
245 | 1 | 0 |
_aProbability Theory : _bA Comprehensive Course / _cby Achim Klenke. |
264 | 1 |
_aLondon : _bSpringer London, _c2008. |
|
300 | _brecurso en línea. | ||
336 |
_atexto _btxt _2rdacontent |
||
337 |
_acomputadora _bc _2rdamedia |
||
338 |
_arecurso en línea _bcr _2rdacarrier |
||
347 |
_aarchivo de texto _bPDF _2rda |
||
490 | 0 | _aUniversitext | |
500 | _aSpringer eBooks | ||
505 | 0 | _aBasic Measure Theory -- Independence -- Generating Functions -- The Integral -- Moments and Laws of Large Numbers -- Convergence Theorems -- Lp-Spaces and the Radon-Nikodym Theorem -- Conditional Expectations -- Martingales -- Optional Sampling Theorems -- Martingale Convergence Theorems and Their Applications -- Backwards Martingales and Exchangeability -- Convergence of Measures -- Probability Measures on Product Spaces -- Characteristic Functions and the Central Limit Theorem -- Infinitely Divisible Distributions -- Markov Chains -- Convergence of Markov Chains -- Markov Chains and Electrical Networks -- Ergodic Theory -- Brownian Motion -- Law of the Iterated Logarithm -- Large Deviations -- The Poisson Point Process -- The Itô Integral -- Stochastic Differential Equations. | |
520 | _aProbabilistic concepts play an increasingly important role in mathematics, physics, biology, financial engineering and computer science. They help us to understand magnetism, amorphous media, genetic diversity and the perils of random developments on the financial markets, and they guide us in constructing more efficient algorithms. This text is a comprehensive course in modern probability theory and its measure-theoretical foundations. Aimed primarily at graduate students and researchers, the book covers a wide variety of topics, many of which are not usually found in introductory textbooks, such as: limit theorems for sums of random variables; martingales; percolation; Markov chains and electrical networks; construction of stochastic processes; Poisson point processes and infinite divisibility; large deviation principles and statistical physics; Brownian motion; and stochastic integral and stochastic differential equations. The theory is developed rigorously and in a self-contained way, with the chapters on measure theory interlaced with the probabilistic chapters in order to display the power of the abstract concepts in the world of probability theory. In addition, plenty of figures, computer simulations, biographic details of key mathematicians, and a wealth of examples support and enliven the presentation. | ||
590 | _aPara consulta fuera de la UANL se requiere clave de acceso remoto. | ||
710 | 2 |
_aSpringerLink (Servicio en línea) _9299170 |
|
776 | 0 | 8 |
_iEdición impresa: _z9781848000476 |
856 | 4 | 0 |
_uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-1-84800-048-3 _zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL) |
942 | _c14 | ||
999 |
_c292043 _d292043 |