000 04053nam a22003855i 4500
001 292127
003 MX-SnUAN
005 20160429154939.0
007 cr nn 008mamaa
008 150903s2013 gw | o |||| 0|eng d
020 _a9783319013213
_99783319013213
024 7 _a10.1007/9783319013213
_2doi
035 _avtls000345964
039 9 _a201509030910
_bVLOAD
_c201405050327
_dVLOAD
_y201402070845
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQA71-90
100 1 _aPaprotny, Alexander.
_eautor
_9323707
245 1 0 _aRealtime Data Mining :
_bSelf-Learning Techniques for Recommendation Engines /
_cby Alexander Paprotny, Michael Thess.
264 1 _aCham :
_bSpringer International Publishing :
_bImprint: Birkhäuser,
_c2013.
300 _axxiii, 313 páginas 100 ilustraciones, 12 ilustraciones en color.
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aApplied and Numerical Harmonic Analysis,
_x2296-5009
500 _aSpringer eBooks
505 0 _a1 Brave New Realtime World – Introduction -- 2 Strange Recommendations? – On The Weaknesses Of Current Recommendation Engines -- 3 Changing Not Just Analyzing – Control Theory And Reinforcement Learning -- 4 Recommendations As A Game – Reinforcement Learning For Recommendation Engines -- 5 How Engines Learn To Generate Recommendations – Adaptive Learning Algorithms -- 6 Up The Down Staircase – Hierarchical Reinforcement Learning -- 7 Breaking Dimensions – Adaptive Scoring With Sparse Grids -- 8 Decomposition In Transition - Adaptive Matrix Factorization -- 9 Decomposition In Transition Ii - Adaptive Tensor Factorization -- 10 The Big Picture – Towards A Synthesis Of Rl And Adaptive Tensor Factorization -- 11 What Cannot Be Measured Cannot Be Controlled - Gauging Success With A/B Tests -- 12 Building A Recommendation Engine – The Xelopes Library -- 13 Last Words – Conclusion -- References -- Summary Of Notation.
520 _aDescribing novel mathematical concepts for recommendation engines, Realtime Data Mining: Self-Learning Techniques for Recommendation Engines features a sound mathematical framework unifying approaches based on control and learning theories, tensor factorization, and hierarchical methods. Furthermore, it presents promising results of numerous experiments on real-world data.  The area of realtime data mining is currently developing at an exceptionally dynamic pace, and realtime data mining systems are the counterpart of today's “classic” data mining systems. Whereas the latter learn from historical data and then use it to deduce necessary actions, realtime analytics systems learn and act continuously and autonomously. In the vanguard of these new analytics systems are recommendation engines. They are principally found on the Internet, where all information is available in realtime and an immediate feedback is guaranteed.   This monograph appeals to computer scientists and specialists in machine learning, especially from the area of recommender systems, because it conveys a new way of realtime thinking by considering recommendation tasks as control-theoretic problems. Realtime Data Mining: Self-Learning Techniques for Recommendation Engines will also interest application-oriented mathematicians because it consistently combines some of the most promising mathematical areas, namely control theory, multilevel approximation, and tensor factorization.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
700 1 _aThess, Michael.
_eautor
_9323708
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9783319013206
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-3-319-01321-3
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c292127
_d292127