000 03731nam a22003855i 4500
001 292166
003 MX-SnUAN
005 20160429154942.0
007 cr nn 008mamaa
008 150903s2013 gw | o |||| 0|eng d
020 _a9783319013336
_99783319013336
024 7 _a10.1007/9783319013336
_2doi
035 _avtls000345968
039 9 _a201509030910
_bVLOAD
_c201405050327
_dVLOAD
_y201402070846
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQA8.9-10.3
100 1 _aHardin, Christopher S.
_eautor
_9323757
245 1 4 _aThe Mathematics of Coordinated Inference :
_bA Study of Generalized Hat Problems /
_cby Christopher S. Hardin, Alan D. Taylor.
264 1 _aCham :
_bSpringer International Publishing :
_bImprint: Springer,
_c2013.
300 _axI, 109 páginas
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aDevelopments in Mathematics,
_x1389-2177 ;
_v33
500 _aSpringer eBooks
505 0 _a1. Introduction -- 2. The Finite Setting -- 3. The Denumerable Setting: Full Visibility -- 4. The Denumerable Setting: One-Way Visibility -- 5. Dual Hat Problems and the Uncountable -- 6. Galvin's Setting: Neutral and Anonymous Predictors -- 7. The Topological Setting -- 8. Universality of the ?-Predictor -- 9. Generalizations and Galois-Tukey Connections -- Bibliography -- Index.
520 _aTwo prisoners are told that they will be brought to a room and seated so that each can see the other. Hats will be placed on their heads; each hat is either red or green. The two prisoners must simultaneously submit a guess of their own hat color, and they both go free if at least one of them guesses correctly. While no communication is allowed once the hats have been placed, they will, however, be allowed to have a strategy session before being brought to the room. Is there a strategy ensuring their release? The answer turns out to be yes, and this is the simplest non-trivial example of a “hat problem.” This book deals with the question of how successfully one can predict the value of an arbitrary function at one or more points of its domain based on some knowledge of its values at other points. Topics range from hat problems that are accessible to everyone willing to think hard, to some advanced topics in set theory and infinitary combinatorics. For example, there is a method of predicting the value f(a) of a function f mapping the reals to the reals, based only on knowledge of f's values on the open interval (a – 1, a), and for every such function the prediction is incorrect only on a countable set that is nowhere dense. The monograph progresses from topics requiring fewer prerequisites to those requiring more, with most of the text being accessible to any  graduate student in mathematics. The broad range of readership  includes researchers, postdocs, and graduate students in the fields of  set theory, mathematical logic, and combinatorics, The hope is that this book will bring together mathematicians from different areas to  think about set theory via a very broad array of coordinated inference problems.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
700 1 _aTaylor, Alan D.
_eautor
_9304183
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9783319013329
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-3-319-01333-6
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c292166
_d292166