000 | 03309nam a22003975i 4500 | ||
---|---|---|---|
001 | 292238 | ||
003 | MX-SnUAN | ||
005 | 20160429154947.0 | ||
007 | cr nn 008mamaa | ||
008 | 150903s2013 gw | o |||| 0|eng d | ||
020 |
_a9783319015057 _99783319015057 |
||
024 | 7 |
_a10.1007/9783319015057 _2doi |
|
035 | _avtls000346018 | ||
039 | 9 |
_a201509030911 _bVLOAD _c201405050328 _dVLOAD _y201402070847 _zstaff |
|
040 |
_aMX-SnUAN _bspa _cMX-SnUAN _erda |
||
050 | 4 | _aQA276-280 | |
100 | 1 |
_aErcan, Ali. _eautor _9323873 |
|
245 | 1 | 0 |
_aLong-Range Dependence and Sea Level Forecasting / _cby Ali Ercan, M. Levent Kavvas, Rovshan K. Abbasov. |
264 | 1 |
_aCham : _bSpringer International Publishing : _bImprint: Springer, _c2013. |
|
300 |
_av, 51 páginas 21 ilustraciones, 6 ilustraciones en color. _brecurso en línea. |
||
336 |
_atexto _btxt _2rdacontent |
||
337 |
_acomputadora _bc _2rdamedia |
||
338 |
_arecurso en línea _bcr _2rdacarrier |
||
347 |
_aarchivo de texto _bPDF _2rda |
||
490 | 0 |
_aSpringerBriefs in Statistics, _x2191-544X |
|
500 | _aSpringer eBooks | ||
505 | 0 | _a1. Introduction -- 2. Long-Range Dependence and ARFIMA Models -- 3. Forecasting, Confidence Band Estimation and Updating -- 4.Case Study I: Caspian Sea Level -- 5.Case Study II: Sea Level Change at Peninsular Malaysia and Sabah-Sarawak -- 6. Summary and Conclusions -- 7. References. | |
520 | _aThis study shows that the Caspian Sea level time series possess long range dependence even after removing linear trends, based on analyses of the Hurst statistic, the sample autocorrelation functions, and the periodogram of the series. Forecasting performance of ARMA, ARIMA, ARFIMA and Trend Line-ARFIMA (TL-ARFIMA) combination models are investigated. The forecast confidence bands and the forecast updating methodology, provided for ARIMA models in the literature, are modified for the ARFIMA models. Sample autocorrelation functions are utilized to estimate the differencing lengths of the ARFIMA models. The confidence bands of the forecasts are estimated using the probability densities of the residuals without assuming a known distribution. There are no long-term sea level records for the region of Peninsular Malaysia and Malaysia’s Sabah-Sarawak northern region of Borneo Island. In such cases the Global Climate Model (GCM) projections for the 21st century can be downscaled to the Malaysia region by means of regression techniques, utilizing the short records of satellite altimeters in this region against the GCM projections during a mutual observation period. This book will be useful for engineers and researchers working in the areas of applied statistics, climate change, sea level change, time series analysis, applied earth sciences, and nonlinear dynamics. | ||
590 | _aPara consulta fuera de la UANL se requiere clave de acceso remoto. | ||
700 | 1 |
_aKavvas, M. Levent. _eautor _9323874 |
|
700 | 1 |
_aAbbasov, Rovshan K. _eautor _9323875 |
|
710 | 2 |
_aSpringerLink (Servicio en línea) _9299170 |
|
776 | 0 | 8 |
_iEdición impresa: _z9783319015040 |
856 | 4 | 0 |
_uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-3-319-01505-7 _zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL) |
942 | _c14 | ||
999 |
_c292238 _d292238 |