000 03309nam a22003975i 4500
001 292238
003 MX-SnUAN
005 20160429154947.0
007 cr nn 008mamaa
008 150903s2013 gw | o |||| 0|eng d
020 _a9783319015057
_99783319015057
024 7 _a10.1007/9783319015057
_2doi
035 _avtls000346018
039 9 _a201509030911
_bVLOAD
_c201405050328
_dVLOAD
_y201402070847
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQA276-280
100 1 _aErcan, Ali.
_eautor
_9323873
245 1 0 _aLong-Range Dependence and Sea Level Forecasting /
_cby Ali Ercan, M. Levent Kavvas, Rovshan K. Abbasov.
264 1 _aCham :
_bSpringer International Publishing :
_bImprint: Springer,
_c2013.
300 _av, 51 páginas 21 ilustraciones, 6 ilustraciones en color.
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aSpringerBriefs in Statistics,
_x2191-544X
500 _aSpringer eBooks
505 0 _a1. Introduction -- 2. Long-Range Dependence and ARFIMA Models -- 3. Forecasting, Confidence Band Estimation and Updating -- 4.Case Study I: Caspian Sea Level -- 5.Case Study II: Sea Level Change at Peninsular Malaysia and Sabah-Sarawak -- 6. Summary and Conclusions -- 7. References.
520 _aThis study shows that the Caspian Sea level time series possess long range dependence even after removing linear trends, based on analyses of the Hurst statistic, the sample autocorrelation functions, and the periodogram of the series. Forecasting performance of ARMA, ARIMA, ARFIMA and Trend Line-ARFIMA (TL-ARFIMA) combination models are investigated. The forecast confidence bands and the forecast updating methodology, provided for ARIMA models in the literature, are modified for the ARFIMA models. Sample autocorrelation functions are utilized to estimate the differencing lengths of the ARFIMA models. The confidence bands of the forecasts are estimated using the probability densities of the residuals without assuming a known distribution. There are no long-term sea level records for the region of Peninsular Malaysia and Malaysia’s Sabah-Sarawak northern region of Borneo Island. In such cases the Global Climate Model (GCM) projections for the 21st century can be downscaled to the Malaysia region by means of regression techniques, utilizing the short records of satellite altimeters in this region against the GCM projections during a mutual observation period. This book will be useful for engineers and researchers working in the areas of applied statistics, climate change, sea level change, time series analysis, applied earth sciences, and nonlinear dynamics.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
700 1 _aKavvas, M. Levent.
_eautor
_9323874
700 1 _aAbbasov, Rovshan K.
_eautor
_9323875
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9783319015040
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-3-319-01505-7
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c292238
_d292238