000 03430nam a22003735i 4500
001 292358
003 MX-SnUAN
005 20160429155017.0
007 cr nn 008mamaa
008 150903s2013 gw | o |||| 0|eng d
020 _a9783319008646
_99783319008646
024 7 _a10.1007/9783319008646
_2doi
035 _avtls000345792
039 9 _a201509030908
_bVLOAD
_c201405050325
_dVLOAD
_y201402061344
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aTJ807-830
100 1 _aChortis, Dimitris I.
_eautor
_9324064
245 1 0 _aStructural Analysis of Composite Wind Turbine Blades :
_bNonlinear Mechanics and Finite Element Models with Material Damping /
_cby Dimitris I Chortis.
264 1 _aHeidelberg :
_bSpringer International Publishing :
_bImprint: Springer,
_c2013.
300 _axiv, 235 páginas 116 ilustraciones
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aResearch Topics in Wind Energy,
_x2196-7806 ;
_v1
500 _aSpringer eBooks
505 0 _aFrom the Contents: Historical Review on the Linear and Nonlinear Damped Structural Behavior of Composite Structures -- Linear Material Coupling Effect on Structural Damping of Composite Beams and Blades -- Nonlinear Damping Mechanics and Finite Element Model for the Static and Damped Free-Vibration Analysis of Composite Strips -- Nonlinear Dynamic Response of Composite Plate-Beams -- Prediction of Nonlinear Damped Response of Large-Scale Blade Composite Structures.
520 _aThis book concerns the development of novel finite elements for the structural analysis of composite beams and blades. The introduction of material damping is also an important aspect of composite structures and it is presented here in terms of their static and dynamic behavior. The book thoroughly presents a new shear beam finite element, which entails new blade section mechanics, capable of predicting structural blade coupling due to composite coupling and/or internal section geometry. Theoretical background is further expanded towards the inclusion of nonlinear structural blade models and damping mechanics for composite structures. The models effectively include geometrically nonlinear terms due to large displacements and rotations, improve the modeling accuracy of very large flexible blades, and enable the modeling of rotational stiffening and buckling, as well as, nonlinear structural coupling. Validation simulations on specimen level study the geometric nonlinearities effect on the modal frequencies and damping values of composite strips of various angle-ply laminations under either tensile or buckling loading. A series of correlation cases between numerical predictions and experimental measurements give credence to the developed nonlinear beam finite element models and underline the essential role of new nonlinear damping and stiffness terms.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9783319008639
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-3-319-00864-6
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c292358
_d292358