000 05484nam a22003855i 4500
001 292434
003 MX-SnUAN
005 20160429155021.0
007 cr nn 008mamaa
008 150903s2013 gw | o |||| 0|eng d
020 _a9783319004013
_99783319004013
024 7 _a10.1007/9783319004013
_2doi
035 _avtls000345657
039 9 _a201509030906
_bVLOAD
_c201405050323
_dVLOAD
_y201402061341
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQC1-999
100 1 _aScherer, Philipp O.J.
_eautor
_9324205
245 1 0 _aComputational Physics :
_bSimulation of Classical and Quantum Systems /
_cby Philipp O.J. Scherer.
250 _a2nd ed. 2013.
264 1 _aHeidelberg :
_bSpringer International Publishing :
_bImprint: Springer,
_c2013.
300 _axviii, 454 páginas 197 ilustraciones, 13 ilustraciones en color.
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aGraduate Texts in Physics,
_x1868-4513
500 _aSpringer eBooks
505 0 _aPart I Numerical Methods -- Error Analysis -- Interpolation -- Numerical Differentiation -- Numerical Integration -- Systems of Inhomogeneous Linear Equations -- Roots and Extremal Points -- Fourier Transformation -- Random Numbers and Monte-Carlo Methods -- Eigenvalue Problems -- Data Fitting -- Discretization of Differential Equations -- Equations of Motion -- Part II Simulation of Classical and Quantum Systems -- Rotational Motion -- Molecular Dynamics -- Thermodynamic Systems -- Random Walk and Brownian Motion -- Electrostatics -- Waves -- Diffusion -- Nonlinear Systems -- Simple Quantum Systems.
520 _aThis textbook presents basic and advanced computational physics in a very didactic style. It contains very-well-presented and simple mathematical descriptions of many of the most important algorithms used in computational physics. Many clear mathematical descriptions of important techniques in computational physics are given. The first part of the book discusses the basic numerical methods. A large number of exercises and computer experiments allows to study the properties of these methods. The second part concentrates on simulation of classical and quantum systems. It uses a rather general concept for the equation of motion which can be applied to ordinary and partial differential equations. Several classes of integration methods are discussed including not only the standard Euler and Runge Kutta method but also multistep methods and the class of Verlet methods which is introduced by studying the motion in Liouville space. Besides the classical methods, inverse interpolation is discussed, together with the popular combined methods by Dekker and Brent and a not so well known improvement by Chandrupatla. A general chapter on the numerical treatment of differential equations provides methods of finite differences, finite volumes, finite elements and boundary elements together with spectral methods and weighted residual based methods. A comparison of several methods for quantum systems is performed, containing pseudo-spectral methods, finite differences methods, rational approximation to the time evolution operator, second order differencing and split operator methods. The book gives simple but non trivial examples from a broad range of physical topics trying to give the reader insight into the numerical treatment but also the simulated problems. Rotational motion is treated in much detail to describe the motion of rigid rotors which can be just a simple spinning top or a collection of molecules or planets. The behaviour of simple quantum systems is studied thoroughly. One focus is on a two level system in an external field. Solution of the Bloch equations allows the simulation of a quantum bit and to understand elementary principles from quantum optics. As an example of a thermodynamic system, the Lennard Jones liquid is simulated. The principles of molecular dynamics are shown with practical simulations. A second thermodynamic topic is the Ising model in one and two dimensions. The solution of the Poisson Boltzman equation is discussed in detail which is very important in Biophysics as well as in semiconductor physics. Besides the standard finite element methods, also modern boundary element methods are discussed. Waves and diffusion processes are simulated. Different methods are compared with regard to their stability and efficiency. Random walk models are studied with application to basic polymer physics. Nonlinear systems are discussed in detail with application to population dynamics and reaction diffusion systems. The exercises to the book are realized as computer experiments. A large number of Java applets is provided. It can be tried out by the reader even without programming skills. The interested reader can modify the programs with the help of the freely available and platform independent programming environment "netbeans".
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9783319004006
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-3-319-00401-3
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c292434
_d292434